Thinking for Doing:让LLMs能推断他人心理状态来做出适当的行动。

LLMs通常能回答有关心理状态的问题,但往往不能将这些推断用于实际行动。例如,如果一个故事中的角色正在寻找他的背包,而模型知道背包在厨房里,那么模型应该能推断出最好的行动是建议角色去厨房查看。

T4D 的目的就是要求模型不仅要能回答有关其他人心理状态的问题(这是许多现有评估方法的焦点),还要能根据这些推断来选择最佳的行动方案。

论文: arxiv.org/abs/2310.03051
**PDF:**arxiv.org/pdf/2310.03051...

解决方案

为了解决这一问题,作者引入了一个零样本提示框架,名为"Foresee and Reflect"(FaR),该框架能显著提高LLMs在T4D上的性能。
工作原理

Foresee and Reflect"(FaR)主要由两个组件组成:预见(Foresee)和反思(Reflect)。

1. 预见(Foresee)

在这一阶段,模型被引导去预测或预见可能的未来事件或行动,并对它们进行初步的评估。这通常涉及到对故事或场景中角色的心理状态(如信念、意图等)的理解,并基于这些理解来预测他们可能会采取哪些行动。

2. 反思(Reflect)

在预见阶段之后,模型进入反思阶段。在这里,模型需要重新考虑其先前的预测和评估,以确定是否需要调整或优化。这可能涉及到更深入地理解角色的心理状态,或者考虑更多的环境因素和可能的结果。
FaR 在 T4D 中的应用

通过结合预见和反思两个阶段,FaR 框架能够引导模型进行更结构化、更深入的推理。这不仅有助于模型更准确地理解角色的心理状态,还使其能够更有效地将这些理解转化为适当的行动或决策。例如,如果在一个故事中,一个角色想找到他的背包,模型首先会在预见阶段预测角色可能会去哪里找。然后,在反思阶段,模型可能会考虑其他因素,如角色过去在哪里找到过背包,或者在当前环境中哪些地方最可能存放背包,从而优化其行动建议。

相关推荐
武子康6 分钟前
AI研究-121 DeepSeek-OCR 研究路线:无限上下文、跨模态抽取、未来创意点、项目创意点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
半臻(火白)7 分钟前
从“看见文字”到“理解内容”:DeepSeek-OCR重构OCR 2.0时代的效率革命
人工智能
FreeCode33 分钟前
LangChain 1.0智能体开发:记忆组件
人工智能·langchain·agent
Geoking.35 分钟前
PyTorch 中 model.eval() 的使用与作用详解
人工智能·pytorch·python
nn在炼金35 分钟前
图模式分析:PyTorch Compile组件解析
人工智能·pytorch·python
Danceful_YJ38 分钟前
25.样式迁移
人工智能·python·深度学习
woshihonghonga1 小时前
Deepseek在它擅长的AI数据处理领域还有是有低级错误【k折交叉验证中每折样本数计算】
人工智能·python·深度学习·机器学习
乌恩大侠1 小时前
以 NVIDIA Sionna Research Kit 赋能 AI 原生 6G 科研
人工智能·usrp
三掌柜6661 小时前
借助 Kiro:实现《晚间手机免打扰》应用,破解深夜刷屏困境
人工智能·aws
飞雁科技1 小时前
CRM客户管理系统定制开发:如何精准满足企业需求并提升效率?
大数据·运维·人工智能·devops·驻场开发