Thinking for Doing:让LLMs能推断他人心理状态来做出适当的行动。

LLMs通常能回答有关心理状态的问题,但往往不能将这些推断用于实际行动。例如,如果一个故事中的角色正在寻找他的背包,而模型知道背包在厨房里,那么模型应该能推断出最好的行动是建议角色去厨房查看。

T4D 的目的就是要求模型不仅要能回答有关其他人心理状态的问题(这是许多现有评估方法的焦点),还要能根据这些推断来选择最佳的行动方案。

论文: arxiv.org/abs/2310.03051
**PDF:**arxiv.org/pdf/2310.03051...

解决方案

为了解决这一问题,作者引入了一个零样本提示框架,名为"Foresee and Reflect"(FaR),该框架能显著提高LLMs在T4D上的性能。
工作原理

Foresee and Reflect"(FaR)主要由两个组件组成:预见(Foresee)和反思(Reflect)。

1. 预见(Foresee)

在这一阶段,模型被引导去预测或预见可能的未来事件或行动,并对它们进行初步的评估。这通常涉及到对故事或场景中角色的心理状态(如信念、意图等)的理解,并基于这些理解来预测他们可能会采取哪些行动。

2. 反思(Reflect)

在预见阶段之后,模型进入反思阶段。在这里,模型需要重新考虑其先前的预测和评估,以确定是否需要调整或优化。这可能涉及到更深入地理解角色的心理状态,或者考虑更多的环境因素和可能的结果。
FaR 在 T4D 中的应用

通过结合预见和反思两个阶段,FaR 框架能够引导模型进行更结构化、更深入的推理。这不仅有助于模型更准确地理解角色的心理状态,还使其能够更有效地将这些理解转化为适当的行动或决策。例如,如果在一个故事中,一个角色想找到他的背包,模型首先会在预见阶段预测角色可能会去哪里找。然后,在反思阶段,模型可能会考虑其他因素,如角色过去在哪里找到过背包,或者在当前环境中哪些地方最可能存放背包,从而优化其行动建议。

相关推荐
阿坡RPA8 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049938 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心8 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI10 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
几米哥11 小时前
从思考到行动:AutoGLM沉思如何让AI真正"动"起来
llm·aigc·chatglm (智谱)
凯子坚持 c11 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20511 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清12 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh12 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员12 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn