Thinking for Doing:让LLMs能推断他人心理状态来做出适当的行动。

LLMs通常能回答有关心理状态的问题,但往往不能将这些推断用于实际行动。例如,如果一个故事中的角色正在寻找他的背包,而模型知道背包在厨房里,那么模型应该能推断出最好的行动是建议角色去厨房查看。

T4D 的目的就是要求模型不仅要能回答有关其他人心理状态的问题(这是许多现有评估方法的焦点),还要能根据这些推断来选择最佳的行动方案。

论文: arxiv.org/abs/2310.03051
**PDF:**arxiv.org/pdf/2310.03051...

解决方案

为了解决这一问题,作者引入了一个零样本提示框架,名为"Foresee and Reflect"(FaR),该框架能显著提高LLMs在T4D上的性能。
工作原理

Foresee and Reflect"(FaR)主要由两个组件组成:预见(Foresee)和反思(Reflect)。

1. 预见(Foresee)

在这一阶段,模型被引导去预测或预见可能的未来事件或行动,并对它们进行初步的评估。这通常涉及到对故事或场景中角色的心理状态(如信念、意图等)的理解,并基于这些理解来预测他们可能会采取哪些行动。

2. 反思(Reflect)

在预见阶段之后,模型进入反思阶段。在这里,模型需要重新考虑其先前的预测和评估,以确定是否需要调整或优化。这可能涉及到更深入地理解角色的心理状态,或者考虑更多的环境因素和可能的结果。
FaR 在 T4D 中的应用

通过结合预见和反思两个阶段,FaR 框架能够引导模型进行更结构化、更深入的推理。这不仅有助于模型更准确地理解角色的心理状态,还使其能够更有效地将这些理解转化为适当的行动或决策。例如,如果在一个故事中,一个角色想找到他的背包,模型首先会在预见阶段预测角色可能会去哪里找。然后,在反思阶段,模型可能会考虑其他因素,如角色过去在哪里找到过背包,或者在当前环境中哪些地方最可能存放背包,从而优化其行动建议。

相关推荐
只怕自己不够好2 小时前
Tensorflow基本概念
人工智能·tensorflow
vvw&2 小时前
如何在 Ubuntu 上安装 Jupyter Notebook
linux·人工智能·python·opencv·ubuntu·机器学习·jupyter
deflag2 小时前
第T7周:Tensorflow实现咖啡豆识别
人工智能·tensorflow·neo4j
CV-King3 小时前
AI生成字幕模型whisper介绍与使用
人工智能·opencv·计算机视觉·whisper
BestSongC5 小时前
基于YOLOv8模型的安全背心目标检测系统(PyTorch+Pyside6+YOLOv8模型)
人工智能·pytorch·深度学习·yolo·目标检测·计算机视觉
冻感糕人~5 小时前
大模型研究报告 | 2024年中国金融大模型产业发展洞察报告|附34页PDF文件下载
人工智能·程序人生·金融·llm·大语言模型·ai大模型·大模型研究报告
qq_273900236 小时前
pytorch register_buffer介绍
人工智能·pytorch·python
龙的爹23337 小时前
论文翻译 | The Capacity for Moral Self-Correction in Large Language Models
人工智能·深度学习·算法·机器学习·语言模型·自然语言处理·prompt
python_知世8 小时前
2024年中国金融大模型产业发展洞察报告(附完整PDF下载)
人工智能·自然语言处理·金融·llm·计算机技术·大模型微调·大模型研究报告
Fanstay9858 小时前
人工智能技术的应用前景及其对生活和工作方式的影响
人工智能·生活