Thinking for Doing:让LLMs能推断他人心理状态来做出适当的行动。

LLMs通常能回答有关心理状态的问题,但往往不能将这些推断用于实际行动。例如,如果一个故事中的角色正在寻找他的背包,而模型知道背包在厨房里,那么模型应该能推断出最好的行动是建议角色去厨房查看。

T4D 的目的就是要求模型不仅要能回答有关其他人心理状态的问题(这是许多现有评估方法的焦点),还要能根据这些推断来选择最佳的行动方案。

论文: arxiv.org/abs/2310.03051
**PDF:**arxiv.org/pdf/2310.03051...

解决方案

为了解决这一问题,作者引入了一个零样本提示框架,名为"Foresee and Reflect"(FaR),该框架能显著提高LLMs在T4D上的性能。
工作原理

Foresee and Reflect"(FaR)主要由两个组件组成:预见(Foresee)和反思(Reflect)。

1. 预见(Foresee)

在这一阶段,模型被引导去预测或预见可能的未来事件或行动,并对它们进行初步的评估。这通常涉及到对故事或场景中角色的心理状态(如信念、意图等)的理解,并基于这些理解来预测他们可能会采取哪些行动。

2. 反思(Reflect)

在预见阶段之后,模型进入反思阶段。在这里,模型需要重新考虑其先前的预测和评估,以确定是否需要调整或优化。这可能涉及到更深入地理解角色的心理状态,或者考虑更多的环境因素和可能的结果。
FaR 在 T4D 中的应用

通过结合预见和反思两个阶段,FaR 框架能够引导模型进行更结构化、更深入的推理。这不仅有助于模型更准确地理解角色的心理状态,还使其能够更有效地将这些理解转化为适当的行动或决策。例如,如果在一个故事中,一个角色想找到他的背包,模型首先会在预见阶段预测角色可能会去哪里找。然后,在反思阶段,模型可能会考虑其他因素,如角色过去在哪里找到过背包,或者在当前环境中哪些地方最可能存放背包,从而优化其行动建议。

相关推荐
imbackneverdie几秒前
国自然申报技术路线图模板
图像处理·人工智能·信息可视化·数据可视化·学术·国自然·国家自然科学基金
stark张宇5 分钟前
别掉队!系统掌握 LLM 应用开发,这可能是你今年最值得投入的学习方向
人工智能·llm·agent
IT_陈寒10 分钟前
Redis性能翻倍的5个冷门技巧,90%开发者都不知道的深度优化方案
前端·人工智能·后端
小脉传媒GEO15 分钟前
GEO优化数据统计系统DeepAnaX系统详细介绍:您的AI生态数据可视化与智能决策中枢
人工智能·信息可视化
roman_日积跬步-终至千里16 分钟前
【人工智能原理(1)】要点总结:从搜索、学习到推理的智能之路
人工智能·学习
云闲不收18 分钟前
AI编程系列——mcp与skill
人工智能·ai编程
aitoolhub20 分钟前
人脸识别技术:从传统方法到深度学习的演进路径
人工智能·深度学习
Aaron158823 分钟前
RFSOC+VU13P在无线信道模拟中的技术应用分析
数据结构·人工智能·算法·fpga开发·硬件架构·硬件工程·射频工程
高洁0127 分钟前
一文了解图神经网络
人工智能·python·深度学习·机器学习·transformer
数据猿28 分钟前
【金猿CIO展】莱商银行信息科技部总经理张勇:AI Infra与Data Agent驱动金融数据价值新十年
人工智能·金融