深入理解树状数组 | 京东物流技术团队

树状数组

树状数组(BIT, Binary Indexed Tree)是简洁优美的数据结构,它能在很少的代码量下支持 单点修改区间查询 ,我们先以 a[] {1, 2, 3, 4, 5, 6} 数组为例建立树状数组看一下树状数组的样子:

可以发现:不是所有节点都是连接在一起的,c[1], c[2], c[3], c[4] 和 c[5], c[6] 分别构成了两棵树;奇数索引位置的节点只管辖一个数组元素(我们例子中以 1 为起始索引)。那么这个树状数组是怎么计算和推导出来的呢?

管辖的区间

树状数组的每个元素会管辖多少个数组元素?也就是说每个元素的区间长度是多少?我们从上图中已经知道了奇数的树状数组元素只管辖一个元素,区间为 c[x] = [x, x],那么我们只需再研究下偶数元素管辖的区间长度即可。

  • c[y] 所管辖的区间长度为 2k ,其中 k 为 y 的 2 进制表示中最低位 1 后面所有 0 的数量;c[y] 所管辖的区间为:[y - 2k + 1, y]

我们以 c[4] 为例,它管辖多少个元素呢?4 的 2 进制表示为 0100,最低位 1 后面 0 的数量为 2,即 k = 2,那么 2k = 22 = 4,所以它管辖的区间长度为 4,也就是 4 个数组元素,区间为 [4 - 4 + 1, 4] = [1, 4]。

父节点是谁?

现在我们知道每个元素所管辖的区间范围了,那么我们怎么才能知道它的父节点是谁呢?就比如说我们现在得到了 c[1] 元素,我们想知道它的父节点,要怎么计算呢?

  • c[x] 的父节点为 c[x + lowbit(x)]

怎么回事?其中的 lowbit(x) 是什么东西?其实它的值和 2k 一致,其中 k 为 x 的 2 进制表示中最低位 1 后面所有 0 的数量,熟悉不熟悉?这个 lowbit(x) 和我们上文中计算该元素所管辖区间长度的值一致!这不就简单了!

  • lowbit(x) 的计算方法:lowbit(x) = x & -x

    我们以计算 c[2] 为例,lowbit(2) = 2 & -2,其中 2 的 2 进制表示为 0010,-2 的 2 进行表示为 1110,它的计算方法为将 2 的所有非符号位二进制全部取反后再加 1,即 1101 + 1 = 1110,执行 & 运算后结果为 0010,十进制表示为 2,与 21 值一致。lowbit 的计算用代码表示为:

    arduino 复制代码
        int lowbit(int x) {
            return x & -x;
        }

我们以 c[1] 节点为例计算下它的父节点是谁,lowbit(1) = 1 & -1 = 0001 & 1111 = 0001 = 1,那么它的父节点为 c[1 + 1] = c[2],与图上表示的一致。


现在我们已经知道如何通过计算来创建树状数组了, 接下来我们要看下它的应用。

区间查询

区间查询我们先讨论计算前 N 项和的方法,比如我们现在要查询前 6 项和,我们来看下它查询的过程:

  • 从 c[6] 开始找子节点,有 c[6] 管辖的区间为 [5, 6],那么再往下找需要找 c[4],它的区间为 [1, 4],计算这两个节点的和即可。

那么从 c[6] 跳到 c[4] 是如何计算出来的呢?我们可以通过 c[6] 区间的下界减 1 来得到,转换成公式表示即为 x - lowbit(x) = 6 - 2 = 4,当它跳到 c[4] 时发现已经满足求和条件,不再向下跳而结束查找,而且我们可以通过计算 4 - lowbit(4) = 4 - 4 = 0 ,可以发现当 x - lowbit(x) = 0 时为结束查找的条件。我们用代码来表示为:

ini 复制代码
    int query(int x) {
        int res = 0;
        for (int i = x; i > 0; i -= lowbit(i)) {
            res += c[i];
        }
        
        return res;
    }

那么我们计算区间 [3, 6] 的和该如何计算呢?我们从图中可以发现,先计算出[1, 6] 和 [1, 2] 的和,再使用前者减去后者即为所得,用代码表示为:

sql 复制代码
    int query(int left, int right) {
        return query(right) - query(left - 1);
    }

单点修改

如果我们要修改 a[x] 的值,我们仅需要修改所有管辖了 a[x] 的 c[y] 即可,而 a[x] 可能会被多个 c[y] 管辖,这些所有的 c[y] 节点该如何确定呢?我们可以回头再去看看前面的树状数组配图,比如我们要修改 a[1] 的值,那么我们需要修改 c[1], c[2] 和 c[4] ,能不能发现它是在不断的 跳父节点 修改?所以,如果我们要修改数组中某个元素的值,树状数组的更新则是不断地更新父节点值。好,我们直接上代码吧:

csharp 复制代码
    // 将 index 索引处的值更新为 num
    void update(int index, int num) {
        a[index] = num;
        add(index, num - a[index]);
    }

    // 更新 c[index] 的值,变化差值为 val
    void add(int index, int val) {
        for (int i = index; i <= c.length; i += lowbit(i)) {
            c[i] += val;
        }
    }

建树

好了,区间查询和单点修改我们都讲完了,但是从头到尾我们还没说过树状数组是怎么建立的呢。我们可以想一下,c 数组初始化时每个索引处的值都为 0,建树仅需要将 a 数组中所有值都在树状数组中执行单点修改即可:

ini 复制代码
    public BinaryIndexedTree(int[] a) {
        this.a = a;
        this.c = new int[a.length + 1];
        
        for (int i = 0; i < a.length; i++) {
            add(i + 1, a[i]);
        }
    }

到这里我们基本上已经将树状数组讲解完毕了,它的全量代码如下:

ini 复制代码
public class BinaryIndexedTree {

    int[] a;

    int[] c;

    public BinaryIndexedTree(int[] a) {
        this.a = a;
        this.c = new int[a.length + 1];

        for (int i = 0; i < a.length; i++) {
            add(i + 1, a[i]);
        }
    }

    // 将 index 索引处的值更新为 num
    void update(int index, int num) {
        a[index] = num;
        add(index, num - a[index]);
    }

    // 更新 c[index] 的值,变化差值为 val
    void add(int index, int val) {
        for (int i = index; i < c.length; i += lowbit(i)) {
            c[i] += val;
        }
    }

    int query(int left, int right) {
        return query(right) - query(left - 1);
    }

    // 查询前缀和的方法
    int query(int x) {
        int res = 0;
        for (int i = x; i > 0; i -= lowbit(i)) {
            res += c[i];
        }

        return res;
    }

    int lowbit(int x) {
        return x & -x;
    }
}

巨人的肩膀

作者:京东物流 王奕龙

来源:京东云开发者社区 自猿其说Tech 转载请注明来源

相关推荐
Asthenia041241 分钟前
Spring扩展点与工具类获取容器Bean-基于ApplicationContextAware实现非IOC容器中调用IOC的Bean
后端
bobz9651 小时前
ovs patch port 对比 veth pair
后端
Asthenia04121 小时前
Java受检异常与非受检异常分析
后端
uhakadotcom1 小时前
快速开始使用 n8n
后端·面试·github
JavaGuide1 小时前
公司来的新人用字符串存储日期,被组长怒怼了...
后端·mysql
bobz9652 小时前
qemu 网络使用基础
后端
Asthenia04122 小时前
面试攻略:如何应对 Spring 启动流程的层层追问
后端
Asthenia04122 小时前
Spring 启动流程:比喻表达
后端
Asthenia04123 小时前
Spring 启动流程分析-含时序图
后端
ONE_Gua3 小时前
chromium魔改——CDP(Chrome DevTools Protocol)检测01
前端·后端·爬虫