yolov5加关键点回归

文章目录

一、数据

1)数据准备

1、手动创建文件夹: yolov5-face-master/data/widerface/train 和 yolov5-face-master/data/widerface/val

2、下载的WIDER_train里的images/ 和 标注文件retinaface_gt_v1.1/train/ 里的label.txt 放在 yolov5-face-master/datasets/train/下 (val验证集同理)

3、执行

bash 复制代码
cd data/
python3 train2yolo.py ./datasets/train ./data/widerface/train
python3 val2yolo.py ./datasets/val ./data/widerface/val

执行train2yolo.py后的data目录:

2)标注文件说明

示例:

label文件: yolov5-face-master/data/widerface/train/0_Parade_Parade_0_1040.txt

0 0.51904296875 0.23813229571984434 0.0732421875 0.08560311284046693 0.5035009765625 0.2264350194552529 0.5433701171875 0.22805058365758757 0.5264765625 0.2425898832684825 0.5035009765625 0.26035953307392995 0.5406669921875 0.2625136186770428

每行15个元素:

labels[1:5]:检测框bbox。

labels[5:] :5个关键点坐标(x,y)的归一化形式。(依次为左眼、右眼、鼻子、嘴角左、嘴角右。

(归一化是x/w0,y/h0 ,

注:这儿原图尺寸写成w0,h0 是参考utils/face_datasets.py/LoadFaceImagesAndLabels 类的 __getitem__函数。 其中的w0、h0为原图尺寸, w,h为resize的尺寸。

二、基于yolov5-face 修改自己的yolov5加关键点回归

需要修改的文件:dataloader.py、augmentations.py、loss.py、yolo.py 以及自己的inference脚本。

1、dataloader,py
2、augmentations.py
3、loss.py
4、yolo.py
相关推荐
音沐mu.8 小时前
【55】玉米病虫害数据集(有v5/v8模型)/YOLO玉米病虫害检测
yolo·目标检测·数据集·玉米病虫害检测·玉米病虫害数据集
工程师老罗8 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
FL162386312915 小时前
无人机视角农田焚烧秸秆检测数据集VOC+YOLO格式3245张2类别
yolo
工程师老罗17 小时前
Pascal VOC数据集简介及数据格式说明
yolo
Lun3866buzha17 小时前
【深度学习应用】鸡蛋裂纹检测与分类:基于YOLOv3的智能识别系统,从图像采集到缺陷分类的完整实现
深度学习·yolo·分类
Lun3866buzha18 小时前
YOLOv8-SEG-FastNet-BiFPN实现室内物品识别与分类:背包、修正带、立方体和铅笔盒检测指南
yolo·分类·数据挖掘
Faker66363aaa19 小时前
基于YOLOv8-GhostHGNetV2的绝缘子破损状态检测与分类系统实现
yolo·分类·数据挖掘
Ryan老房19 小时前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居
工程师老罗21 小时前
举例说明YOLOv1 输出坐标到原图像素的映射关系
人工智能·yolo·计算机视觉
逸俊晨晖21 小时前
NVIDIA 4090的8路1080p实时YOLOv8目标检测
人工智能·yolo·目标检测·nvidia