yolov5加关键点回归

文章目录

一、数据

1)数据准备

1、手动创建文件夹: yolov5-face-master/data/widerface/train 和 yolov5-face-master/data/widerface/val

2、下载的WIDER_train里的images/ 和 标注文件retinaface_gt_v1.1/train/ 里的label.txt 放在 yolov5-face-master/datasets/train/下 (val验证集同理)

3、执行

bash 复制代码
cd data/
python3 train2yolo.py ./datasets/train ./data/widerface/train
python3 val2yolo.py ./datasets/val ./data/widerface/val

执行train2yolo.py后的data目录:

2)标注文件说明

示例:

label文件: yolov5-face-master/data/widerface/train/0_Parade_Parade_0_1040.txt

0 0.51904296875 0.23813229571984434 0.0732421875 0.08560311284046693 0.5035009765625 0.2264350194552529 0.5433701171875 0.22805058365758757 0.5264765625 0.2425898832684825 0.5035009765625 0.26035953307392995 0.5406669921875 0.2625136186770428

每行15个元素:

labels[1:5]:检测框bbox。

labels[5:] :5个关键点坐标(x,y)的归一化形式。(依次为左眼、右眼、鼻子、嘴角左、嘴角右。

(归一化是x/w0,y/h0 ,

注:这儿原图尺寸写成w0,h0 是参考utils/face_datasets.py/LoadFaceImagesAndLabels 类的 __getitem__函数。 其中的w0、h0为原图尺寸, w,h为resize的尺寸。

二、基于yolov5-face 修改自己的yolov5加关键点回归

需要修改的文件:dataloader.py、augmentations.py、loss.py、yolo.py 以及自己的inference脚本。

1、dataloader,py
2、augmentations.py
3、loss.py
4、yolo.py
相关推荐
今天炼丹了吗8 小时前
YOLOv11融合[ECCV2024]FADformer中的FFCM模块
yolo
红色的山茶花15 小时前
YOLOv9-0.1部分代码阅读笔记-loss_tal.py
笔记·深度学习·yolo
机器懒得学习18 小时前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测
AI莫大猫1 天前
(6)YOLOv4算法基本原理以及和YOLOv3 的差异
算法·yolo
KeepThinking!1 天前
YOLO-World:Real-Time Open-Vocabulary Object Detection
人工智能·yolo·目标检测·多模态
前网易架构师-高司机1 天前
游泳溺水识别数据集,对9984张原始图片进行YOLO,COCO JSON, VOC XML 格式的标注,平均识别率在91.7%以上
yolo·溺水·游泳溺水·游泳安全
发呆小天才O.oᯅ2 天前
YOLOv8目标检测——详细记录使用OpenCV的DNN模块进行推理部署C++实现
c++·图像处理·人工智能·opencv·yolo·目标检测·dnn
深度学习lover2 天前
<项目代码>YOLO Visdrone航拍目标识别<目标检测>
python·yolo·目标检测·计算机视觉·visdrone航拍目标识别
深度学习lover2 天前
[项目代码] YOLOv8 遥感航拍飞机和船舶识别 [目标检测]
python·yolo·目标检测·计算机视觉·遥感航拍飞机和船舶识别
学习BigData2 天前
【使用PyQt5和YOLOv11开发电脑屏幕区域的实时分类GUI】——选择检测区域
qt·yolo·分类