yolov5加关键点回归

文章目录

一、数据

1)数据准备

1、手动创建文件夹: yolov5-face-master/data/widerface/train 和 yolov5-face-master/data/widerface/val

2、下载的WIDER_train里的images/ 和 标注文件retinaface_gt_v1.1/train/ 里的label.txt 放在 yolov5-face-master/datasets/train/下 (val验证集同理)

3、执行

bash 复制代码
cd data/
python3 train2yolo.py ./datasets/train ./data/widerface/train
python3 val2yolo.py ./datasets/val ./data/widerface/val

执行train2yolo.py后的data目录:

2)标注文件说明

示例:

label文件: yolov5-face-master/data/widerface/train/0_Parade_Parade_0_1040.txt

0 0.51904296875 0.23813229571984434 0.0732421875 0.08560311284046693 0.5035009765625 0.2264350194552529 0.5433701171875 0.22805058365758757 0.5264765625 0.2425898832684825 0.5035009765625 0.26035953307392995 0.5406669921875 0.2625136186770428

每行15个元素:

labels[1:5]:检测框bbox。

labels[5:] :5个关键点坐标(x,y)的归一化形式。(依次为左眼、右眼、鼻子、嘴角左、嘴角右。

(归一化是x/w0,y/h0 ,

注:这儿原图尺寸写成w0,h0 是参考utils/face_datasets.py/LoadFaceImagesAndLabels 类的 __getitem__函数。 其中的w0、h0为原图尺寸, w,h为resize的尺寸。

二、基于yolov5-face 修改自己的yolov5加关键点回归

需要修改的文件:dataloader.py、augmentations.py、loss.py、yolo.py 以及自己的inference脚本。

1、dataloader,py
2、augmentations.py
3、loss.py
4、yolo.py
相关推荐
蹦蹦跳跳真可爱58916 小时前
Python----目标检测(使用YOLO 模型进行线程安全推理和流媒体源)
人工智能·python·yolo·目标检测·目标跟踪
蹦蹦跳跳真可爱58918 小时前
Python----目标检测(训练YOLOV8网络)
人工智能·python·yolo·目标检测
孤独野指针*P1 天前
释放模型潜力:浅谈目标检测微调技术(Fine-tuning)
人工智能·深度学习·yolo·计算机视觉·目标跟踪
蹦蹦跳跳真可爱5891 天前
Python----目标检测(YOLO简介)
人工智能·python·yolo·目标检测·计算机视觉·目标跟踪
蹦蹦跳跳真可爱5891 天前
Python----目标检测(《YOLOv3:AnIncrementalImprovement》和YOLO-V3的原理与网络结构)
人工智能·python·深度学习·神经网络·yolo·目标检测·目标跟踪
Coovally AI模型快速验证1 天前
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
人工智能·神经网络·yolo·目标检测·无人机·cocos2d
Mrs.Gril2 天前
RKNN3588上部署 RTDETRV2
深度学习·yolo·rknn·rtdetr
FL16238631292 天前
[yolov11改进系列]基于yolov11引入可变形注意力DAttention的python源码+训练源码
yolo
Coovally AI模型快速验证3 天前
基于YOLO-NAS-Pose的无人机象群姿态估计:群体行为分析的突破
人工智能·神经网络·算法·yolo·目标检测·无人机·cocos2d
凌康ACG4 天前
易语言使用OCR
c++·yolo·c#·ocr·易语言