zookeeper+kafka

zookeeper简介

zookeeper是一种分布式服务管理框架。存储业务服务,节点元数据及状态信息,并负责通知在zookeeper上注册的服务节点状态给客户端= 文件系统 +通知机制。

zookeeper特点

(1)Zookeeper:一个领导者(Leader),多个跟随者(Follower)组成的集群。

(2)Zookeepe集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所以Zookeeper适合安装奇数台服务器。

(3)全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的。

(4)更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行,即先进先出。

(5)数据更新原子性,一次数据更新要么成功,要么失败。

(6)实时性,在一定时间范围内,Client能读到最新数据。

zookeeper数据结构

ZooKeeper数据模型的结构与Linux文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每一个2Node默认能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识。

zookeeper应用场景

在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如:IP不容易记住,而域名容易记住。

统一配置管理

(1)分布式环境下,配置文件同步非常常见。一般要求一个集群中,所有节点的配置信息是一致的,比如Kafka集群。对配置文件修改后,希望能够快速同步到各个节点上。 (2)配置管理可交由ZooKeeper实现。可将配置信息写入ZooKeeper上的一个Znode。各个客户端服务器监听这个Znode。一旦 Znode中的数据被修改,ZooKeeper将通知各个客户端服务器。

统一集群管理

(1)分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出一些调整。 (2)ZooKeeper可以实现实时监控节点状态变化。可将节点信息写入ZooKeeper上的一个ZNode。监听这个ZNode可获取它的实时状态变化。

服务器动态上下线

客户端能实时洞察到服务器上下线的变化。

软负载均衡

在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求。

zookeeper选举机制

第一次启动选举机制

(1)服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票,不够半数以上(3票),选举无法完成。

(2)服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的myid比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成。

(3)服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。

(4)服务器4启动,发起一次选举。此时服务器1,2,3已经不是LOOKING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3。

总结:每一台服务器开启都会进行一次选举,服务器会将票投给myid大的服务器,当服务器票数过半时,票数最大的成为Leader。

非第一次启动选举机制

(1)当ZooKeeper 集群中的一台服务器出现以下两种情况之一时,就会开始进入Leader选举:

1)服务器初始化启动。

2)服务器运行期间无法和Leader保持连接。

(2)而当一台机器进入Leader选举流程时,当前集群也可能会处于以下两种状态:

1)集群中本来就已经存在一个Leader。

对于已经存在Leader的情况,机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器来说,仅仅需要和 Leader机器建立连接,并进行状态同步即可。

2)集群中确实不存在Leader。

假设ZooKeeper由5台服务器组成,SID分别为1、2、3、4、5,ZXID分别为8、8、8、7、7,并且此时SID为3的服务器是Leader。某一时刻,3和5服务器出现故障,因此开始进行Leader选举。

选举Leader规则:

1.EPOCH大的直接胜出。

2.EPOCH相同,事务id大的胜出。

3.事务id相同,服务器id大的胜出。

zookeeper作用

生产者push数据到kafka集群,就必须要找到kafka集群的节点在哪里,这些都是通过zookeeper去寻找的。消费者消费哪一条数据,也需要zookeeper的支持,从zookeeper获得offset,offset记录上一次消费的数据消费到哪里,这样就可以接着下一条数据进行消费。

kafka

消息队列

由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。

我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。

使用消息队列的好处

1)解耦

允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

(2)可恢复性

系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

(3)缓冲

有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。

(4)灵活性 & 峰值处理能力

在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

(5)异步通信

很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

消息队列的两种模式

1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)

2)发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)

kafka概述

Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域。

kafka特性

1、高吞吐量、低延迟

2、可扩展性

3、持久性、可靠性

4、容错性

5、高并发

kafka系统架构

生产者要推送到kafka集群需要先通过zookeeper确定kafka的位置,消费者消费的数据到哪里也要根据数据在存储2ookeeper上的offset确定offset变异量记录上一条消息者消费的数据位置,以便在故障恢复后可以接着下一次数据继续消费

几个kafka服务就是几个broker,生成推送数据到topic,topic可以被分区多个partition,一个partitione可以有多个relica,relica可以是一个leader 和多个follower,leader负责数据的读写,follower仅负责数据备份,消费者面向topic进行数据消费。

(1)Broker 服务器

一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。

(2)Topic 主题

消息主题,或者表或者键,存数据的表和键

(3)producers 生产者

两个角色 Leader (负责读写) follower (复制备份)

(4)replica 副本

有多个副本可以实现可高用,副本中也有两个角色

follower (夏制备份) Leader ( 负责读写)

(5)offset 偏移量

记录消费者的位置,消费者的数据的位置。

分区的原因

方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了。

可以提高并发,因为可以以Partition为单位读写了。

实验

部署 Zookeeper 集群

安装 JDK

yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel
java -version

安装zookeeper

cd /opt
wget https://archive.apache.org/dist/zookeeper/zookeeper-3.5.7/apache-zookeeper-3.5.7-bin.tar.gz
tar -zxvf apache-zookeeper-3.5.7-bin.tar.gz
mv apache-zookeeper-3.5.7-bin /usr/local/zookeeper-3.5.7
cd /usr/local/zookeeper-3.5.7/conf/
cp zoo_sample.cfg zoo.cfg
vim zoo.cfg

修改配置文件,添加集群信息

拷贝配置好的 Zookeeper 配置文件到其他机器上
scp /usr/local/zookeeper-3.5.7/conf/zoo.cfg 192.168.11.44:/usr/local/zookeeper-3.5.7/conf/
scp /usr/local/zookeeper-3.5.7/conf/zoo.cfg 192.168.11.55:/usr/local/zookeeper-3.5.7/conf/

在每个节点上创建数据目录和日志目录
mkdir /usr/local/zookeeper-3.5.7/data
mkdir /usr/local/zookeeper-3.5.7/logs

在每个节点的dataDir指定的目录下创建一个 myid 的文件
echo 1 > /usr/local/zookeeper-3.5.7/data/myid
echo 2 > /usr/local/zookeeper-3.5.7/data/myid
echo 3 > /usr/local/zookeeper-3.5.7/data/myid

配置 Zookeeper 启动脚本

vim /etc/init.d/zookeeper
ZK_HOME='/usr/local/zookeeper-3.5.7'
case $1 in
start)
	echo "---------- zookeeper 启动 ------------"
	$ZK_HOME/bin/zkServer.sh start
;;
stop)
	echo "---------- zookeeper 停止 ------------"
	$ZK_HOME/bin/zkServer.sh stop
;;
restart)
	echo "---------- zookeeper 重启 ------------"
	$ZK_HOME/bin/zkServer.sh restart
;;
status)
	echo "---------- zookeeper 状态 ------------"
	$ZK_HOME/bin/zkServer.sh status
;;
*)
    echo "Usage: $0 {start|stop|restart|status}"
esac

分别启动zookeeper

chmod +x /etc/init.d/zookeeper
service zookeeper.sh start

查看当前状态
service zookeeper.sh status
相关推荐
WX187021128731 小时前
在分布式光伏电站如何进行电能质量的治理?
分布式
Stringzhua2 小时前
【SpringCloud】Kafka消息中间件
spring·spring cloud·kafka
不能再留遗憾了4 小时前
RabbitMQ 高级特性——消息分发
分布式·rabbitmq·ruby
茶馆大橘4 小时前
微服务系列六:分布式事务与seata
分布式·docker·微服务·nacos·seata·springcloud
材料苦逼不会梦到计算机白富美7 小时前
golang分布式缓存项目 Day 1
分布式·缓存·golang
想进大厂的小王7 小时前
项目架构介绍以及Spring cloud、redis、mq 等组件的基本认识
redis·分布式·后端·spring cloud·微服务·架构
Java 第一深情7 小时前
高性能分布式缓存Redis-数据管理与性能提升之道
redis·分布式·缓存
杨荧8 小时前
【JAVA毕业设计】基于Vue和SpringBoot的服装商城系统学科竞赛管理系统
java·开发语言·vue.js·spring boot·spring cloud·java-ee·kafka
ZHOU西口9 小时前
微服务实战系列之玩转Docker(十八)
分布式·docker·云原生·架构·数据安全·etcd·rbac
zmd-zk9 小时前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka