kafka的请求处理机制

目录

前言:

kafak是如何处理请求的?

控制请求与数据类请求

参考资料


前言:

无论是 Kafka 客户端还是 Broker 端,它们之间的交互都是通过**"请求 / 响应"的方式完成的**。比如,客户端会通过网络发送消息生产请求给 Broker,而 Broker 处理完成后,会发送对应的响应给到客户端。

Kafka 自己定义了一组请求协议,用于实现各种各样的交互操作。比如常见的 PRODUCE 请求是用于生产消息的FETCH 请求是用于消费消息的,METADATA 请求是用于请求 Kafka 集群元数据信息的。

kafak是如何处理请求的?

Reactor 模式。简单来说,Reactor 模式是事件驱动架构的一种实现方式,特别适合应用于处理多个客户端并发向服务器端发送请求的场景。

多个客户端会发送请求给到 Reactor。Reactor 有个请求分发线程 Dispatcher,也就是图中的 Acceptor,它会将不同的请求下发到多个工作线程中处理。

在这个架构中,Acceptor 线程只是用于请求分发,不涉及具体的逻辑处理,非常得轻量级,因此有很高的吞吐量表现。而这些工作线程可以根据实际业务处理需要任意增减,从而动态调节系统负载能力。

kafka的请求示意图:

Kafka 的 Broker 端有个 SocketServer 组件,类似于 Reactor 模式中的 Dispatcher,它也有对应的 Acceptor 线程和一个工作线程池,只不过在 Kafka 中,这个工作线程池有个专属的名字,叫网络线程池。Kafka 提供了 Broker 端参数 num.network.threads,用于调整该网络线程池的线程数。其默认值是 3,表示每台 Broker 启动时会创建 3 个网络线程,专门处理客户端发送的请求。

Acceptor 线程采用轮询的方式将入站请求公平地发到所有网络线程中,因此,在实际使用过程中,这些线程通常都有相同的几率被分配到待处理请求。这种轮询策略编写简单,同时也避免了请求处理的倾斜,有利于实现较为公平的请求处理调度。

当网络线程接收到请求后,它是怎么处理的呢?你可能会认为,它顺序处理不就好了吗?实际上,Kafka 在这个环节又做了一层异步线程池的处理,我们一起来看一看下面这张图。

当网络线程拿到请求后**,它不是自己处理,而是将请求放入到一个共享请求队列中。**Broker 端还有个 IO 线程池,负责从该队列中取出请求,执行真正的处理。如果是 PRODUCE 生产请求,则将消息写入到底层的磁盘日志中;如果是 FETCH 请求,则从磁盘或页缓存中读取消息。

IO 线程池处中的线程才是执行请求逻辑的线程。Broker 端参数 num.io.threads 控制了这个线程池中的线程数。目前该参数默认值是 8,表示每台 Broker 启动后自动创建 8 个 IO 线程处理请求。你可以根据实际硬件条件设置此线程池的个数。

比如,如果你的机器上 CPU 资源非常充裕,你完全可以调大该参数,允许更多的并发请求被同时处理。当 IO 线程处理完请求后,会将生成的响应发送到网络线程池的响应队列中,然后由对应的网络线程负责将 Response 返还给客户端。

图中有一个叫 Purgatory 的组件,这是 Kafka 中著名的"炼狱"组件。它是用来缓存延时请求(Delayed Request)的。所谓延时请求,就是那些一时未满足条件不能立刻处理的请求。比如设置了 acks=all 的 PRODUCE 请求,**一旦设置了 acks=all,那么该请求就必须等待 ISR 中所有副本都接收了消息后才能返回,此时处理该请求的 IO 线程就必须等待其他 Broker 的写入结果。**当请求不能立刻处理时,它就会暂存在 Purgatory 中。稍后一旦满足了完成条件,IO 线程会继续处理该请求,并将 Response 放入对应网络线程的响应队列中。

控制请求与数据类请求

Kafka Broker 对所有请求是一视同仁的。但是,在 Kafka 内部,除了客户端发送的 PRODUCE 请求和 FETCH 请求之外,还有很多执行其他操作的请求类型,**比如负责更新 Leader 副本、Follower 副本以及 ISR 集合的 LeaderAndIsr 请求,负责勒令副本下线的 StopReplica 请求等。与 PRODUCE 和 FETCH 请求相比,这些请求有个明显的不同:**它们不是数据类的请求,而是控制类的请求。也就是说,它们并不是操作消息数据的,而是用来执行特定的 Kafka 内部动作的。

Kafka 社区把 PRODUCE 和 FETCH 这类请求称为数据类请求,把 LeaderAndIsr、StopReplica 这类请求称为控制类请求。细究起来,当前这种一视同仁的处理方式对控制类请求是不合理的。为什么呢?因为控制类请求有这样一种能力:它可以直接令数据类请求失效!

对于控制请求与数据类请求的处理方案是,Kafka Broker 启动后,会在后台分别创建两套网络线程池和 IO 线程池的组合,它们分别处理数据类请求和控制类请求。至于所用的 Socket 端口,自然是使用不同的端口了,你需要提供不同的 listeners 配置,显式地指定哪套端口用于处理哪类请求。

参考资料

24 | 请求是怎么被处理的?-极客时间

《kafka核心技术与实战》-胡夕

相关推荐
龙哥·三年风水3 分钟前
workman服务端开发模式-应用开发-vue-element-admin封装websocket
分布式·websocket·vue
李洋-蛟龙腾飞公司3 小时前
HarmonyOS Next 应用元服务开发-分布式数据对象迁移数据文件资产迁移
分布式·华为·harmonyos
技术路上的苦行僧6 小时前
分布式专题(10)之ShardingSphere分库分表实战指南
分布式·shardingsphere·分库分表
GitCode官方6 小时前
GitCode 光引计划投稿 | GoIoT:开源分布式物联网开发平台
分布式·开源·gitcode
小扳8 小时前
微服务篇-深入了解 MinIO 文件服务器(你还在使用阿里云 0SS 对象存储图片服务?教你使用 MinIO 文件服务器:实现从部署到具体使用)
java·服务器·分布式·微服务·云原生·架构
zquwei17 小时前
SpringCloudGateway+Nacos注册与转发Netty+WebSocket
java·网络·分布式·后端·websocket·网络协议·spring
道一云黑板报21 小时前
Flink集群批作业实践:七析BI批作业执行
大数据·分布式·数据分析·flink·kubernetes
qq_54702617921 小时前
Kafka 常见问题
kafka
core51221 小时前
flink sink kafka
flink·kafka·sink
飞来又飞去1 天前
kafka sasl和acl之间的关系
分布式·kafka