分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测

分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测

目录

    • [分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测](#分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测)

分类效果





基本描述

1.MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测,多特征输入模型,运行环境Matlab2020b及以上;

2.基于开普勒算法(KOA)优化卷积长短期记忆神经网络(CNN-LSTM)分类预测。

2023年新算法,KOA-CNN-LSTM开普勒优化卷积长短期记忆神经网络的数据分类预测,MATLAB程序,多变量特征输入,优化了学习率、卷积核大小及隐藏层单元个数等,方便增加维度优化自它参数。

3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图。

4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。

5.输出指标包括优化参数、精确度、召回率、精确率、F1分数。

程序设计

  • 完整程序和数据获取方式,私信博主回复MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测
clike 复制代码
[Order] = sort(PL_Fit);  %% 对当前种群中的解的适应度值进行排序
 %% 函数评估t时的最差适应度值
 worstFitness = Order(SearchAgents_no);                  %% Eq.(11)
 M = M0 * (exp(-lambda * (t / Tmax)));                   %% Eq.(12)

 %% 计算表示太阳与第i个解之间的欧几里得距离R
 for i = 1:SearchAgents_no
    R(i) = 0;
    for j = 1:dim
       R(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2;   %% Eq.(7)
    end
    R(i) = sqrt(R(i));
 end
 %% 太阳和对象i在时间t的质量计算如下:
 for i = 1:SearchAgents_no
    sum = 0;
    for k = 1:SearchAgents_no
        sum = sum + (PL_Fit(k) - worstFitness);
    end
    MS(i) = rand * (Sun_Score - worstFitness) / (sum);   %% Eq.(8)
    m(i) = (PL_Fit(i) - worstFitness) / (sum);           %% Eq.(9)
 end
 
 %% 第2步:定义引力(F)
 % 计算太阳和第i个行星的引力,根据普遍的引力定律:
 for i = 1:SearchAgents_no
    Rnorm(i) = (R(i) - min(R)) / (max(R) - min(R));      %% 归一化的R(Eq.(24))
    MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MS
    Mnorm(i) = (m(i) - min(m)) / (max(m) - min(m));      %% 归一化的m
    Fg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6)
 end
% a1表示第i个解在时间t的椭圆轨道的半长轴,
for i = 1:SearchAgents_no
    a1(i) = rand * (T(i)^2 * (M * (MS(i) + m(i)) / (4 * pi * pi)))^(1/3); %% Eq.(23)
end

for i = 1:SearchAgents_no
% a2是逐渐从-1到-2的循环控制参数
a2 = -1 - 1 * (rem(t, Tmax / Tc) / (Tmax / Tc)); %% Eq.(29)

% ξ是从1到-2的线性减少因子
n = (a2 - 1) * rand + 1;    %% Eq.(28)
a = randi(SearchAgents_no); %% 随机选择的解的索引
b = randi(SearchAgents_no); %% 随机选择的解的索引
rd = rand(1, dim);          %% 按照正态分布生成的向量
r = rand;                   %% r1是[0,1]范围内的随机数

%% 随机分配的二进制向量
U1 = rd < r;                %% Eq.(21)
O_P = Positions(i, :);      %% 存储第i个解的当前位置

%% 第6步:更新与太阳的距离(第3、4、5在后面)
if rand < rand
    % h是一个自适应因子,用于控制时间t时太阳与当前行星之间的距离
    h = (1 / (exp(n * randn))); %% Eq.(27)
    % 基于三个解的平均向量:当前解、迄今为止的最优解和随机选择的解
    Xm = (Positions(b, :) + Sun_Pos + Positions(i, :)) / 3.0;
    Positions(i, :) = Positions(i, :) .* U1 + (Xm + h .* (Xm - Positions(a, :))) .* (1 - U1); %% Eq.(26)
else

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
程楠楠&M20 天前
koa中间件
前端·中间件·node.js·node·koa
前端小臻1 个月前
后台管理-动态路由配置以及用户权限管理(vue3+element plus+koa+Sequelize )
前端·网络·node.js·koa
fishmemory7sec2 个月前
Koa2项目实战3 (koa-body,用于处理 HTTP 请求中的请求体)
数据库·mongodb·koa·koa-body
fishmemory7sec3 个月前
Koa2项目实战2(路由管理、项目结构优化)
数据库·mongodb·koa
fishmemory7sec3 个月前
Koa2+mongodb项目实战1(项目搭建)
数据库·mongodb·koa
简简单单做算法4 个月前
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
matlab·cnn-lstm·贝叶斯优化·数据分类·bo-cnn-lstm
机器学习之心4 个月前
靓图!多点创新!CEEMDAN-Kmeans-VMD-CNN-LSTM-Attention双重分解+卷积长短期+注意力多元时间序列预测
attention·cnn-lstm·ceemdan·双重分解·kmeans-vmd·卷积长短期记忆·注意力多元时间序列预测
小Bk5 个月前
"从Express到初识Koa:当Web框架也开始追赶潮流,谁还在用老黄历?"
前端·koa
小陈同学呦5 个月前
深入剖析Koa接口封装原理,洋葱模型?递归调用?
前端·javascript·koa
小陈同学呦6 个月前
Node 中基于 Koa 框架的 Web 服务搭建实战
后端·node.js·koa