三种深度学习模型(LSTM、CNN-LSTM、贝叶斯优化的CNN-LSTM/BO-CNN-LSTM)对北半球光伏数据进行时间序列预测

代码功能

该代码实现了一个光伏发电量预测系统,采用三种深度学习模型(LSTM、CNN-LSTM、贝叶斯优化的CNN-LSTM)对北半球光伏数据进行时间序列预测,并通过多维度评估指标和可视化对比模型性能。

算法步骤

1. 数据预处理
  • 数据导入:从Excel读取北半球光伏数据
  • 序列重构
    构建时间窗口:用前4步预测下一步
  • 数据集划分:70%训练集,30%测试集
  • 归一化 :采用mapminmax归一化到[0,1]区间
  • 数据平铺:转换为LSTM需要的序列格式
2. 模型构建

① LSTM模型

matlab 复制代码
layers = [
    sequenceInputLayer(f_)
    lstmLayer(20)       % 20个LSTM单元
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer];

② CNN-LSTM模型

matlab 复制代码
lgraph = layerGraph();
tempLayers = [
    sequenceInputLayer([f_,1,1])
    sequenceFoldingLayer];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    convolution2dLayer([3,1],16)  % 卷积核3x1, 16通道
    reluLayer
    convolution2dLayer([3,1],32)  % 卷积核3x1, 32通道
    reluLayer];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    sequenceUnfoldingLayer
    flattenLayer
    lstmLayer(5)                  % 5个LSTM单元
    fullyConnectedLayer(1)
    regressionLayer];

③ BO-CNN-LSTM模型

  • 贝叶斯优化超参数
    • LSTM单元数
    • 初始学习率
    • L2正则化系数
3. 模型训练
  • 通用设置
    • 优化器:Adam
    • 最大迭代次数:500
    • 学习率策略:每400次衰减为0.1倍
    • 正则化:L2权重衰减
  • 训练过程监控:记录训练损失和RMSE
4. 预测与反归一化
matlab 复制代码
t_sim = predict(net, Lp_test); 
T_sim = mapminmax('reverse', t_sim, ps_output);  % 反归一化
5. 评估与可视化
  • 评估指标:RMSE、MAE、MAPE、R²、MSE
  • 可视化对比
    • 预测值 vs 真实值曲线
    • 误差分布柱状图
    • 雷达图/罗盘图多指标对比
    • 二维散点图(R² vs MAPE)
    • 柱状图指标对比

关键参数设定

参数 说明
num_size 0.7 训练集比例
MaxEpochs 500 最大训练轮次
LSTM Units 20 基础LSTM单元数
CNN Filters [16,32] 卷积层通道数
Drop Factor 0.1 学习率衰减因子
Drop Period 400 衰减周期

运行环境要求

MATLAB版本:R2021a或更高

应用场景

  1. 光伏发电预测
    • 电网调度与能源管理
    • 电站运维决策支持
  2. 时间序列预测
    • 电力负荷预测
    • 气象数据预测
    • 金融时间序列分析
  3. 模型对比研究
    • LSTM vs CNN-LSTM架构性能对比
    • 贝叶斯优化效果验证

创新点总结

  1. 三级模型架构
    LSTM → CNN-LSTM → BO-CNN-LSTM渐进式优化
  2. 多维度评估体系
    • 5种量化指标(RMSE/R²/MAE/MAPE/MSE)
    • 6种可视化对比(曲线/雷达/罗盘/柱状/散点/误差图)
  3. 贝叶斯自动调参
    优化神经网络超参数组合

:实际运行时需确保:

  1. 北半球光伏数据.xlsx文件在路径中
  2. 自定义函数(fical.m, radarChart.m)已实现






完整代码私信博主回复三种深度学习模型(LSTM、CNN-LSTM、贝叶斯优化的CNN-LSTM/BO-CNN-LSTM)对北半球光伏数据进行时间序列预测

相关推荐
bst@微胖子5 小时前
HuggingFace项目实战之分类任务实战
pytorch·深度学习·分类
YukiMori235 小时前
基于Paddle微调ERNIE的中文情感分析实战教程
深度学习·机器学习
小途软件5 小时前
基于深度学习的人脸检测算法研究
java·人工智能·pytorch·python·深度学习·语言模型
guoketg6 小时前
Vision Transformer(ViT)的讲解和面试题目讲解
人工智能·python·深度学习·vit
热心不起来的市民小周6 小时前
测测你的牌:基于 MobileNetV2 的车牌内容检测
python·深度学习·计算机视觉
空山新雨后、6 小时前
Masked AutoEncoder(MAE)详解:高 Mask 率如何造就强视觉表征
人工智能·深度学习·chatgpt·多模态
Francek Chen7 小时前
【自然语言处理】应用06:针对序列级和词元级应用微调BERT
人工智能·pytorch·深度学习·自然语言处理·bert
ekkoalex7 小时前
强化学习中参数的设置
人工智能·深度学习·transformer
datamonday7 小时前
[EAI-037] π0.6* 基于RECAP方法与优势调节的自进化VLA机器人模型
人工智能·深度学习·机器人·具身智能·vla