三种深度学习模型(LSTM、CNN-LSTM、贝叶斯优化的CNN-LSTM/BO-CNN-LSTM)对北半球光伏数据进行时间序列预测

代码功能

该代码实现了一个光伏发电量预测系统,采用三种深度学习模型(LSTM、CNN-LSTM、贝叶斯优化的CNN-LSTM)对北半球光伏数据进行时间序列预测,并通过多维度评估指标和可视化对比模型性能。

算法步骤

1. 数据预处理
  • 数据导入:从Excel读取北半球光伏数据
  • 序列重构
    构建时间窗口:用前4步预测下一步
  • 数据集划分:70%训练集,30%测试集
  • 归一化 :采用mapminmax归一化到[0,1]区间
  • 数据平铺:转换为LSTM需要的序列格式
2. 模型构建

① LSTM模型

matlab 复制代码
layers = [
    sequenceInputLayer(f_)
    lstmLayer(20)       % 20个LSTM单元
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer];

② CNN-LSTM模型

matlab 复制代码
lgraph = layerGraph();
tempLayers = [
    sequenceInputLayer([f_,1,1])
    sequenceFoldingLayer];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    convolution2dLayer([3,1],16)  % 卷积核3x1, 16通道
    reluLayer
    convolution2dLayer([3,1],32)  % 卷积核3x1, 32通道
    reluLayer];
lgraph = addLayers(lgraph,tempLayers);

tempLayers = [
    sequenceUnfoldingLayer
    flattenLayer
    lstmLayer(5)                  % 5个LSTM单元
    fullyConnectedLayer(1)
    regressionLayer];

③ BO-CNN-LSTM模型

  • 贝叶斯优化超参数
    • LSTM单元数
    • 初始学习率
    • L2正则化系数
3. 模型训练
  • 通用设置
    • 优化器:Adam
    • 最大迭代次数:500
    • 学习率策略:每400次衰减为0.1倍
    • 正则化:L2权重衰减
  • 训练过程监控:记录训练损失和RMSE
4. 预测与反归一化
matlab 复制代码
t_sim = predict(net, Lp_test); 
T_sim = mapminmax('reverse', t_sim, ps_output);  % 反归一化
5. 评估与可视化
  • 评估指标:RMSE、MAE、MAPE、R²、MSE
  • 可视化对比
    • 预测值 vs 真实值曲线
    • 误差分布柱状图
    • 雷达图/罗盘图多指标对比
    • 二维散点图(R² vs MAPE)
    • 柱状图指标对比

关键参数设定

参数 说明
num_size 0.7 训练集比例
MaxEpochs 500 最大训练轮次
LSTM Units 20 基础LSTM单元数
CNN Filters [16,32] 卷积层通道数
Drop Factor 0.1 学习率衰减因子
Drop Period 400 衰减周期

运行环境要求

MATLAB版本:R2021a或更高

应用场景

  1. 光伏发电预测
    • 电网调度与能源管理
    • 电站运维决策支持
  2. 时间序列预测
    • 电力负荷预测
    • 气象数据预测
    • 金融时间序列分析
  3. 模型对比研究
    • LSTM vs CNN-LSTM架构性能对比
    • 贝叶斯优化效果验证

创新点总结

  1. 三级模型架构
    LSTM → CNN-LSTM → BO-CNN-LSTM渐进式优化
  2. 多维度评估体系
    • 5种量化指标(RMSE/R²/MAE/MAPE/MSE)
    • 6种可视化对比(曲线/雷达/罗盘/柱状/散点/误差图)
  3. 贝叶斯自动调参
    优化神经网络超参数组合

:实际运行时需确保:

  1. 北半球光伏数据.xlsx文件在路径中
  2. 自定义函数(fical.m, radarChart.m)已实现






完整代码私信博主回复三种深度学习模型(LSTM、CNN-LSTM、贝叶斯优化的CNN-LSTM/BO-CNN-LSTM)对北半球光伏数据进行时间序列预测

相关推荐
青云交21 小时前
Java 大视界 -- 基于 Java 的大数据实时流处理在能源行业设备状态监测与故障预测中的应用
flink·lstm·设备状态监测·故障预测·实时流处理·java 大数据·能源行业
WGS.1 天前
llama factory 扩充词表训练
深度学习
Coovally AI模型快速验证1 天前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
人工智能·深度学习·算法·机器学习·目标跟踪·语言模型
居7然1 天前
Attention注意力机制:原理、实现与优化全解析
人工智能·深度学习·大模型·transformer·embedding
AI纪元故事会1 天前
《目标检测全解析:从R-CNN到DETR,六大经典模型深度对比与实战指南》
人工智能·yolo·目标检测·r语言·cnn
Python图像识别1 天前
75_基于深度学习的咖啡叶片病害检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
PyAIGCMaster1 天前
钉钉的设计理念方面,我可以学习
人工智能·深度学习·学习·钉钉
深蓝电商API1 天前
告别混乱文本:基于深度学习的 PDF 与复杂版式文档信息抽取
人工智能·深度学习·pdf
tt5555555555551 天前
Transformer原理与过程详解
网络·深度学习·transformer