GA-CNN-LSTM-Attention、CNN-LSTM-Attention、GA-CNN-LSTM、CNN-LSTM四模型多变量时序预测一键对比

GA-CNN-LSTM-Attention、CNN-LSTM-Attention、GA-CNN-LSTM、CNN-LSTM四模型多变量时序预测一键对比

目录

预测效果








基本介绍

基于GA-CNN-LSTM-Attention、CNN-LSTM-Attention、GA-CNN-LSTM、CNN-LSTM四模型多变量时序预测一键对比(仅运行一个main即可)

Matlab代码,每个模型的预测结果和组合对比结果都有!

1.无需繁琐步骤,只需要运行一个main即可一键出所有图像。

2.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!

3.GA优化参数为:隐藏层节点数,学习率,正则化系数。

4.遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传机制的优化搜索算法,由美国的 John holland于20世纪70年代提出。它通过模拟生物进化过程中的染色体基因的交叉、变异等过程,将问题的求解过程转换成计算机仿真运算,以搜索最优解。。

5.运行环境要求MATLAB版本为2023b及其以上。

评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多

代码中文注释清晰,质量极高,赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白

程序设计

  • 完整代码私信回复GA-CNN-LSTM-Attention、CNN-LSTM-Attention、GA-CNN-LSTM、CNN-LSTM四模型多变量时序预测一键对比
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('数据集.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数
kim = 2;                       % 延时步长(前面多行历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
nim = size(result, 2) - 1;     % 原始数据的特征是数目

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1 + zim, 1: end - 1)', 1, ...
        (kim + zim) * nim), result(i + kim + zim - 1, end)];
end

%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征长度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, -1, 1);%将训练集和测试集的数据调整到0到1之间
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, -1, 1);% 对测试集数据做归一化
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(p_train, f_, 1, 1, M));
p_test  =  double(reshape(p_test , f_, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test )';

%%  数据格式转换
for i = 1 : M
    Lp_train{i, 1} = p_train(:, :, 1, i);
end

for i = 1 : N
    Lp_test{i, 1}  = p_test( :, :, 1, i);
end

disp('----------运行CNN-LSTM模型----------');
%%  CNN-LSTM

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
深蓝学院16 分钟前
密西根大学新作——LightEMMA:自动驾驶中轻量级端到端多模态模型
人工智能·机器学习·自动驾驶
归去_来兮38 分钟前
人工神经网络(ANN)模型
人工智能·机器学习·人工神经网络
2201_7549184140 分钟前
深入理解卷积神经网络:从基础原理到实战应用
人工智能·神经网络·cnn
强盛小灵通专卖员1 小时前
DL00219-基于深度学习的水稻病害检测系统含源码
人工智能·深度学习·水稻病害
Luke Ewin1 小时前
CentOS7.9部署FunASR实时语音识别接口 | 部署商用级别实时语音识别接口FunASR
人工智能·语音识别·实时语音识别·商用级别实时语音识别
Joern-Lee1 小时前
初探机器学习与深度学习
人工智能·深度学习·机器学习
云卓SKYDROID2 小时前
无人机数据处理与特征提取技术分析!
人工智能·科技·无人机·科普·云卓科技
R²AIN SUITE2 小时前
金融合规革命:R²AIN SUITE 如何重塑银行业务智能
大数据·人工智能
新知图书2 小时前
DeepSeek基于注意力模型的可控图像生成
人工智能·深度学习·计算机视觉
白熊1882 小时前
【计算机视觉】OpenCV实战项目: Fire-Smoke-Dataset:基于OpenCV的早期火灾检测项目深度解析
人工智能·opencv·计算机视觉