卷积长短期记忆神经网络

机器学习之心9 个月前
卷积长短期记忆神经网络·数据分类预测·sam-attention·cnn-lstm-sam·融合空间注意力机制
分类预测 | Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测1.Matlab实现CNN-LSTM-SAM-Attention卷积长短期记忆神经网络融合空间注意力机制的数据分类预测(完整源码和数据) 2.自带数据,多输入,单输出,多分类。图很多,包括多边形面积PAM、分类准确率、灵敏度、特异性、曲线下面积AUC、Kappa系数、F_measure。等等。 3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2021及以上。 4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
机器学习之心10 个月前
卷积长短期记忆神经网络·多变量时间序列预测·变分模态分解·vmd-cnn-lstm
多维时序 | Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测1.Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测; 2.运行环境为Matlab2021及以上; 3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 4.data为数据集,main1_VMD.m、main2_VMD_CNN_LSTM.m为主程序,运行即可,所有文件放在一个文件夹; 5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
机器学习之心1 年前
卷积长短期记忆神经网络·cnn-lstm·msadbo-cnn-lstm·改进蜣螂算法优化·多特征回归预测
回归预测 | Matlab实现MSADBO-CNN-LSTM基于改进蜣螂算法优化卷积神经网络-长短期记忆神经网络多特征回归预测1.Matlab实现MSADBO-CNN-LSTM基于改进蜣螂优化算法-卷积神经网络-长短期记忆神经网络多特征回归预测; 2.运行环境为Matlab2021b; 3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测, main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE多指标评价; 5.优化学习率,隐藏层节点,正则化系数;
机器学习之心1 年前
卷积长短期记忆神经网络·se注意力机制·多变量回归预测·ssa-cnn-lstm-a
回归预测 | Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)1.Matlab实现SSA-CNN-LSTM-Attention麻雀优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制); 2.运行环境为Matlab2021b; 3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测, main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MSE、MAE、MAPE多指标评价; 5.麻雀算法优化学习率,隐藏层节点,正则化系数;
机器学习之心1 年前
卷积长短期记忆神经网络·cnn-lstm·时间序列预测·麻雀算法优化·ssa-cnn-lstm
时序预测 | Matlab实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测(完整源码和数据) 1.MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测(完整源码和数据) 2.输入输出单个变量,时间序列预测预测; 3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高; 4.麻雀算法优化参数为:学习率,隐含层节点,正则化参数; 5.excel数据,方便替换,运行环境2020及以上。
机器学习之心1 年前
卷积长短期记忆神经网络·cnn-lstm·数据分类预测·麻雀算法优化·ssa-cnn-lstm
分类预测 | MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络数据分类预测1.MATLAB实现SSA-CNN-LSTM数据分类预测,运行环境Matlab2021b及以上; 2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的数据分类预测程序; 3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;SSA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图; 4.data为数据集,输入12个特征,分四类;main为主程序,
机器学习之心1 年前
koa·卷积长短期记忆神经网络·cnn-lstm·数据分类预测·开普勒算法优化·koa-cnn-lstm
分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测1.MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测,多特征输入模型,运行环境Matlab2020b及以上; 2.基于开普勒算法(KOA)优化卷积长短期记忆神经网络(CNN-LSTM)分类预测。 2023年新算法,KOA-CNN-LSTM开普勒优化卷积长短期记忆神经网络的数据分类预测,MATLAB程序,多变量特征输入,优化了学习率、卷积核大小及隐藏层单元个数等,方便增加维度优化自它参数。 3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用
机器学习之心1 年前
卷积长短期记忆神经网络·poa-cnn-lstm·cnn-lstm·鹈鹕算法优化·时间序列预测
时序预测 | MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络时间序列预测MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络时间序列预测(完整源码和数据) 1.MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络时间序列预测(完整源码和数据) 2.输入输出单个变量,时间序列预测预测; 3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高; 4.鹈鹕算法优化参数为:学习率,隐含层节点,正则化参数; 5.excel数据,方便替换,运行环境2020及以上。
机器学习之心1 年前
卷积长短期记忆神经网络·cnn-lstm·时间序列预测·风电功率预测
时序预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测(风电功率预测)1.MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测(风电功率预测); 2.运行环境为Matlab2021b; 3.单个变量时间序列预测; 4.data为数据集,单个变量excel数据,MainCNN_LSTMTS.m为主程序,运行即可,所有文件放在一个文件夹; 5.命令窗口输出R2、MSE、RMSE、MAE、MAPE多指标评价;
机器学习之心1 年前
卷积长短期记忆神经网络·cnn-lstm·时间序列预测
时序预测 | MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价) 1.MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价); 2.运行环境Matlab2020及以上,data为数据集,单变量时间序列预测; 3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测; 4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;
机器学习之心1 年前
so-cnn-lstm·蛇群算法优化·卷积长短期记忆神经网络·cnn-lstm·时间序列预测
时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。 1.MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测; 2.单变量时间序列预测; 3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高; 4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数; 5.excel数据,方便替换,运行环境2020及以上。
机器学习之心1 年前
多输入单输出回归预测·卷积长短期记忆神经网络·poa-cnn-lstm·cnn-lstm·鹈鹕算法优化
回归预测 | MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络多输入单输出回归预测MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 1.MATLAB实现POA-CNN-LSTM鹈鹕算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 2.输入多个特征,输出单个变量,多输入单输出回归预测; 3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高; 4.鹈鹕算法优化参数为:学习率,隐含层节点,正则化参数; 5.excel数据,方便替换,运行环境2020及以上。
机器学习之心1 年前
多输入单输出回归预测·so-cnn-lstm·蛇群算法优化·卷积长短期记忆神经网络
回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 1.MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 2.输入多个特征,输出单个变量,多输入单输出回归预测; 3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高; 4.蛇群算法优化参数为:学习率,隐含层节点,正则化参数; 5.excel数据,方便替换,运行环境2020及以上。