PyTorch CUDA GPU高占用测试

0x00 问题描述

安装完成PyTorch、CUDA后,验证PyTorch是否能够通过CUDA高占用GPU(占用>95%),特地使用以下代码测试。

0x01 代码设计

这个代码会持续执行神经网络的训练任务,每次循环都进行前向传播、反向传播和参数更新,以保持高强度的GPU占用。

python 复制代码
## CUDA - GPU 占用测试
## 正确运行结果为:GPU占用显著提高(>95,NVIDIA 3060 LAPTOP)

import torch
import torch.nn as nn
import torch.optim as optim

# 检查CUDA是否可用
if torch.cuda.is_available():
    device = torch.device("cuda")
    print("CUDA is available. Using GPU.")
else:
    raise Exception("CUDA is not available. Please ensure you have a GPU.")

# 创建一个简单的神经网络
class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(10000, 10000)  # 大规模线性层,可以根据需要调整大小

    def forward(self, x):
        x = self.fc1(x)
        return x

net = SimpleNet().to(device)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)

# 创建一个大型随机输入张量
batch_size = 32
input_data = torch.randn(batch_size, 10000, device=device)

# 持续执行神经网络训练任务以保持高占用率
try:
    while True:
        # 正向传播
        output = net(input_data)
        loss = criterion(output, input_data)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
except KeyboardInterrupt:
    print("Stopped by user.")

# 释放GPU资源
net = None
torch.cuda.empty_cache()

0x02 实验结果

笔者使用的3060 Laptop GPU 占用在95%以上,代码效果显著,说明PyTorch、CUDA环境安装成功。

0x03 后记

  • No Pains, No Gains.
相关推荐
码云数智-大飞30 分钟前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
DisonTangor1 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19822 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了2 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
biuyyyxxx2 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
数智联AI团队2 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
极客数模2 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F
大数据·c语言·python·数学建模·matlab
不懒不懒2 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6002 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房2 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai