PyTorch CUDA GPU高占用测试

0x00 问题描述

安装完成PyTorch、CUDA后,验证PyTorch是否能够通过CUDA高占用GPU(占用>95%),特地使用以下代码测试。

0x01 代码设计

这个代码会持续执行神经网络的训练任务,每次循环都进行前向传播、反向传播和参数更新,以保持高强度的GPU占用。

python 复制代码
## CUDA - GPU 占用测试
## 正确运行结果为:GPU占用显著提高(>95,NVIDIA 3060 LAPTOP)

import torch
import torch.nn as nn
import torch.optim as optim

# 检查CUDA是否可用
if torch.cuda.is_available():
    device = torch.device("cuda")
    print("CUDA is available. Using GPU.")
else:
    raise Exception("CUDA is not available. Please ensure you have a GPU.")

# 创建一个简单的神经网络
class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(10000, 10000)  # 大规模线性层,可以根据需要调整大小

    def forward(self, x):
        x = self.fc1(x)
        return x

net = SimpleNet().to(device)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)

# 创建一个大型随机输入张量
batch_size = 32
input_data = torch.randn(batch_size, 10000, device=device)

# 持续执行神经网络训练任务以保持高占用率
try:
    while True:
        # 正向传播
        output = net(input_data)
        loss = criterion(output, input_data)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
except KeyboardInterrupt:
    print("Stopped by user.")

# 释放GPU资源
net = None
torch.cuda.empty_cache()

0x02 实验结果

笔者使用的3060 Laptop GPU 占用在95%以上,代码效果显著,说明PyTorch、CUDA环境安装成功。

0x03 后记

  • No Pains, No Gains.
相关推荐
光锥智能27 分钟前
快手AI的围城与重构
人工智能·重构
老蒋新思维34 分钟前
创客匠人峰会深度复盘:AI 智能体驱动,知识变现的业务重构与实战路径
网络·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
tang&3 小时前
【Python自动化测试】Selenium常用函数详解
开发语言·python·selenium
sali-tec8 小时前
C# 基于halcon的视觉工作流-章66 四目匹配
开发语言·人工智能·数码相机·算法·计算机视觉·c#
这张生成的图像能检测吗8 小时前
(论文速读)ParaDiffusion:基于信息扩散模型的段落到图像生成
人工智能·机器学习·计算机视觉·文生图·图像生成·视觉语言模型
新程记8 小时前
2025年,上海CAIE认证报考指南:把握AI机遇的实用起点
人工智能·百度
unicrom_深圳市由你创科技8 小时前
汽修AI智能体V1.0——从模型微调到应用部署
人工智能
路边草随风8 小时前
milvus向量数据库使用尝试
人工智能·python·milvus
irizhao8 小时前
基于深度学习的智能停车场系统设计与实现
人工智能·深度学习
newobut8 小时前
vscode远程调试python程序,基于debugpy库
vscode·python·调试·debugpy