PyTorch CUDA GPU高占用测试

0x00 问题描述

安装完成PyTorch、CUDA后,验证PyTorch是否能够通过CUDA高占用GPU(占用>95%),特地使用以下代码测试。

0x01 代码设计

这个代码会持续执行神经网络的训练任务,每次循环都进行前向传播、反向传播和参数更新,以保持高强度的GPU占用。

python 复制代码
## CUDA - GPU 占用测试
## 正确运行结果为:GPU占用显著提高(>95,NVIDIA 3060 LAPTOP)

import torch
import torch.nn as nn
import torch.optim as optim

# 检查CUDA是否可用
if torch.cuda.is_available():
    device = torch.device("cuda")
    print("CUDA is available. Using GPU.")
else:
    raise Exception("CUDA is not available. Please ensure you have a GPU.")

# 创建一个简单的神经网络
class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(10000, 10000)  # 大规模线性层,可以根据需要调整大小

    def forward(self, x):
        x = self.fc1(x)
        return x

net = SimpleNet().to(device)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)

# 创建一个大型随机输入张量
batch_size = 32
input_data = torch.randn(batch_size, 10000, device=device)

# 持续执行神经网络训练任务以保持高占用率
try:
    while True:
        # 正向传播
        output = net(input_data)
        loss = criterion(output, input_data)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
except KeyboardInterrupt:
    print("Stopped by user.")

# 释放GPU资源
net = None
torch.cuda.empty_cache()

0x02 实验结果

笔者使用的3060 Laptop GPU 占用在95%以上,代码效果显著,说明PyTorch、CUDA环境安装成功。

0x03 后记

  • No Pains, No Gains.
相关推荐
山烛5 分钟前
OpenCV:图像透视变换
人工智能·opencv·计算机视觉·图像透视变换
hrrrrb12 分钟前
【Python】字符串
java·前端·python
艾醒(AiXing-w)18 分钟前
探索大语言模型(LLM):Ollama快速安装部署及使用(含Linux环境下离线安装)
linux·人工智能·语言模型
月小水长21 分钟前
大模型接入自定义 MCP Server,我开发了个免费使用的基金涨跌归纳和归因分析的 Agent
人工智能·后端
大翻哥哥27 分钟前
Python 2025:低代码开发与自动化运维的新纪元
运维·python·低代码
咏方舟【长江支流】41 分钟前
AI+华为HarmonyOS开发工具DevEco Studio详细安装指南
人工智能·华为·移动开发·harmonyos·arkts·deveco studio·长江支流
Source.Liu43 分钟前
【Pywinauto库】12.2 pywinauto.element_info 后端内部实施模块
windows·python·自动化
Source.Liu43 分钟前
【Pywinauto库】12.1 pywinauto.backend 后端内部实施模块
开发语言·windows·python·自动化
用户8356290780511 小时前
用Python高效处理Excel数据:Excel数据读取指南
后端·python
阿里云云原生1 小时前
Qoder 全新「上下文压缩」功能正式上线,省 Credits !
人工智能