PyTorch CUDA GPU高占用测试

0x00 问题描述

安装完成PyTorch、CUDA后,验证PyTorch是否能够通过CUDA高占用GPU(占用>95%),特地使用以下代码测试。

0x01 代码设计

这个代码会持续执行神经网络的训练任务,每次循环都进行前向传播、反向传播和参数更新,以保持高强度的GPU占用。

python 复制代码
## CUDA - GPU 占用测试
## 正确运行结果为:GPU占用显著提高(>95,NVIDIA 3060 LAPTOP)

import torch
import torch.nn as nn
import torch.optim as optim

# 检查CUDA是否可用
if torch.cuda.is_available():
    device = torch.device("cuda")
    print("CUDA is available. Using GPU.")
else:
    raise Exception("CUDA is not available. Please ensure you have a GPU.")

# 创建一个简单的神经网络
class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(10000, 10000)  # 大规模线性层,可以根据需要调整大小

    def forward(self, x):
        x = self.fc1(x)
        return x

net = SimpleNet().to(device)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)

# 创建一个大型随机输入张量
batch_size = 32
input_data = torch.randn(batch_size, 10000, device=device)

# 持续执行神经网络训练任务以保持高占用率
try:
    while True:
        # 正向传播
        output = net(input_data)
        loss = criterion(output, input_data)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
except KeyboardInterrupt:
    print("Stopped by user.")

# 释放GPU资源
net = None
torch.cuda.empty_cache()

0x02 实验结果

笔者使用的3060 Laptop GPU 占用在95%以上,代码效果显著,说明PyTorch、CUDA环境安装成功。

0x03 后记

  • No Pains, No Gains.
相关推荐
Java后端的Ai之路21 小时前
【神经网络基础】-一个完整的神经网络学习过程是怎样的?
人工智能·深度学习·神经网络·学习·激活函数
whitelbwwww21 小时前
图像处理--pytorch
图像处理·人工智能·pytorch
快降重21 小时前
超越“查重”:在AI协作时代构建无法被算法复制的学术价值
人工智能·深度学习·aigc·降ai·学术工具
renhongxia121 小时前
大型视觉语言模型下的异常链思维
人工智能·语言模型·自然语言处理
生成论实验室21 小时前
即事成象:频率生成论——应对AI范式转型的生成存在论及其中国经典基础
人工智能·科技·神经网络·信息与通信·几何学
阿正的梦工坊21 小时前
ARE:Meta 发布的代理研究平台,如何构建动态环境并实现大规模扩展
人工智能·深度学习·机器学习·大模型
老歌老听老掉牙21 小时前
基于参数化模型的砂轮轮廓建模与可视化
python·数学建模
weisian15121 小时前
入门篇--知名企业-8-Amazon:从在线书商到万物帝国——一部重塑现代商业与生活的传奇
人工智能·生活
不荒Huang21 小时前
task3—大语言模型基础
人工智能·语言模型·自然语言处理
A100861212121 小时前
图论基础与谱聚类算法
人工智能·机器学习·聚类