Explainability for Large Language Models: A Survey

本文是LLM系列文章,针对《Explainability for Large Language Models: A Survey》的翻译。

大型语言模型的可解释性:综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 LLM的训练范式](#2 LLM的训练范式)
  • [3 传统微调范式的解释](#3 传统微调范式的解释)
  • [4 提示范式的解释](#4 提示范式的解释)
  • [5 评估的解释](#5 评估的解释)
  • [6 研究挑战](#6 研究挑战)
  • [7 结论](#7 结论)

摘要

大型语言模型(llm)在自然语言处理方面已经展示了令人印象深刻的能力。然而,它们的内部机制仍然不清楚,这种透明度的缺乏给下游应用带来了不必要的风险。因此,理解和解释这些模型对于阐明它们的行为、局限性和社会影响至关重要。在本文中,我们介绍了可解释性技术的分类,并提供了用于解释基于Transformer的语言模型的方法的结构化概述。我们根据LLM的训练范式对技术进行分类:传统的基于微调的范式和基于提示的范式。对于每个范式,我们总结了生成个体预测的局部解释和整体模型知识的全局解释的目标和主要方法。我们还讨论了用于评估生成的解释的度量,并讨论了如何利用解释来调试模型和提高性能。最后,与传统的机器学习模型相比,我们研究了LLM时代解释技术的关键挑战和新兴机遇。

1 引言

2 LLM的训练范式

3 传统微调范式的解释

4 提示范式的解释

5 评估的解释

6 研究挑战

7 结论

在本文中,我们对LLM的可解释性技术进行了全面概述。我们总结了基于模型训练范式的局部和全局解释方法。我们还讨论了使用解释来改进模型、评估和关键挑战。未来的主要发展选择包括开发适合不同LLM的解释方法,评估解释的可信度,以及提高人类的可解释性。随着LLM的不断发展,可解释性将变得极其重要,以确保这些模型透明、公平和有益。我们希望这一调查为这个新兴的研究领域提供一个有用的组织,并突出未来工作的开放性问题。

相关推荐
酌沧10 分钟前
AI做美观PPT:3步流程+工具测评+避坑指南
人工智能·powerpoint
狂师14 分钟前
啥是AI Agent!2025年值得推荐入坑AI Agent的五大工具框架!(新手科普篇)
人工智能·后端·程序员
星辰大海的精灵16 分钟前
使用Docker和Kubernetes部署机器学习模型
人工智能·后端·架构
victory043118 分钟前
SpiceMix enables integrative single-cell spatial modeling of cell identity 文章解读
人工智能·深度学习
新智元22 分钟前
半数清华,8 位华人 AI 天团集体投奔 Meta!奥特曼:砸钱抢人不如培养死忠
人工智能·openai
新智元25 分钟前
全球顶尖 CS 论文惊爆 AI「好评密令」!哥大等 14 所高校卷入,学术圈炸锅
人工智能·openai
l0sgAi30 分钟前
vLLM在RTX50系显卡上部署大模型-使用wsl2
linux·人工智能
DDliu30 分钟前
花半个月死磕提示词后,我发现:真正值钱的不是模板,是这套可复用的结构化思维
人工智能
腾讯云开发者31 分钟前
AI 浪潮下的锚与帆:工程师文化的变与不变 | 架构师夜生活
人工智能
JoernLee31 分钟前
机器学习算法:支持向量机SVM
人工智能·算法·机器学习