Explainability for Large Language Models: A Survey

本文是LLM系列文章,针对《Explainability for Large Language Models: A Survey》的翻译。

大型语言模型的可解释性:综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 LLM的训练范式](#2 LLM的训练范式)
  • [3 传统微调范式的解释](#3 传统微调范式的解释)
  • [4 提示范式的解释](#4 提示范式的解释)
  • [5 评估的解释](#5 评估的解释)
  • [6 研究挑战](#6 研究挑战)
  • [7 结论](#7 结论)

摘要

大型语言模型(llm)在自然语言处理方面已经展示了令人印象深刻的能力。然而,它们的内部机制仍然不清楚,这种透明度的缺乏给下游应用带来了不必要的风险。因此,理解和解释这些模型对于阐明它们的行为、局限性和社会影响至关重要。在本文中,我们介绍了可解释性技术的分类,并提供了用于解释基于Transformer的语言模型的方法的结构化概述。我们根据LLM的训练范式对技术进行分类:传统的基于微调的范式和基于提示的范式。对于每个范式,我们总结了生成个体预测的局部解释和整体模型知识的全局解释的目标和主要方法。我们还讨论了用于评估生成的解释的度量,并讨论了如何利用解释来调试模型和提高性能。最后,与传统的机器学习模型相比,我们研究了LLM时代解释技术的关键挑战和新兴机遇。

1 引言

2 LLM的训练范式

3 传统微调范式的解释

4 提示范式的解释

5 评估的解释

6 研究挑战

7 结论

在本文中,我们对LLM的可解释性技术进行了全面概述。我们总结了基于模型训练范式的局部和全局解释方法。我们还讨论了使用解释来改进模型、评估和关键挑战。未来的主要发展选择包括开发适合不同LLM的解释方法,评估解释的可信度,以及提高人类的可解释性。随着LLM的不断发展,可解释性将变得极其重要,以确保这些模型透明、公平和有益。我们希望这一调查为这个新兴的研究领域提供一个有用的组织,并突出未来工作的开放性问题。

相关推荐
小叶子来了啊2 小时前
少儿编程Scratch3.0教程——扩展篇(视频侦测)
人工智能·深度学习·计算机视觉·scratch
GEO AI搜索优化助手2 小时前
未来图景:信息传播链的生态重构与长期影响
人工智能·搜索引擎·重构·生成式引擎优化·ai优化·geo搜索优化
adaAS14143152 小时前
【深度学习】【目标检测】使用RetinaNet-R101-FPN模型实现建筑设备物体检测_1
人工智能·深度学习·目标检测
拉姆哥的小屋2 小时前
基于改进条件GAN的高分辨率地质图像生成系统
人工智能·神经网络·生成对抗网络
serve the people2 小时前
tensorflow Keras Sequential 模型
人工智能·tensorflow·keras
RebeccaGuan08082 小时前
泛微.采知连知识管理平台深度应用DeepSeek,自动采集数据,让问答更安全·准确
人工智能·智能问答·知识管理·deepseek·知识采集
元让_vincent3 小时前
论文Review 3DGS综述 | 南京大学 | 3DGS Survey, Technologies Challenges and Opportunities |(二)扩展、模块增强、其他技术讨论挑战
人工智能·数据挖掘·综述·3dgs
六行神算API-天璇3 小时前
数字人“个性化”背后的玄机:大模型微调与RAG实战解析
大数据·人工智能
永远都不秃头的程序员(互关)3 小时前
大模型Agent核心架构拆解:从原理到可落地的智能任务规划器开发
人工智能