Explainability for Large Language Models: A Survey

本文是LLM系列文章,针对《Explainability for Large Language Models: A Survey》的翻译。

大型语言模型的可解释性:综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 LLM的训练范式](#2 LLM的训练范式)
  • [3 传统微调范式的解释](#3 传统微调范式的解释)
  • [4 提示范式的解释](#4 提示范式的解释)
  • [5 评估的解释](#5 评估的解释)
  • [6 研究挑战](#6 研究挑战)
  • [7 结论](#7 结论)

摘要

大型语言模型(llm)在自然语言处理方面已经展示了令人印象深刻的能力。然而,它们的内部机制仍然不清楚,这种透明度的缺乏给下游应用带来了不必要的风险。因此,理解和解释这些模型对于阐明它们的行为、局限性和社会影响至关重要。在本文中,我们介绍了可解释性技术的分类,并提供了用于解释基于Transformer的语言模型的方法的结构化概述。我们根据LLM的训练范式对技术进行分类:传统的基于微调的范式和基于提示的范式。对于每个范式,我们总结了生成个体预测的局部解释和整体模型知识的全局解释的目标和主要方法。我们还讨论了用于评估生成的解释的度量,并讨论了如何利用解释来调试模型和提高性能。最后,与传统的机器学习模型相比,我们研究了LLM时代解释技术的关键挑战和新兴机遇。

1 引言

2 LLM的训练范式

3 传统微调范式的解释

4 提示范式的解释

5 评估的解释

6 研究挑战

7 结论

在本文中,我们对LLM的可解释性技术进行了全面概述。我们总结了基于模型训练范式的局部和全局解释方法。我们还讨论了使用解释来改进模型、评估和关键挑战。未来的主要发展选择包括开发适合不同LLM的解释方法,评估解释的可信度,以及提高人类的可解释性。随着LLM的不断发展,可解释性将变得极其重要,以确保这些模型透明、公平和有益。我们希望这一调查为这个新兴的研究领域提供一个有用的组织,并突出未来工作的开放性问题。

相关推荐
司南OpenCompass2 分钟前
司南“六位一体”评测体系的一年演进
人工智能·大模型·多模态模型·大模型评测·司南评测·ai评测
大模型任我行5 分钟前
电信:Agent记忆管理决策理论框架DAM
人工智能·语言模型·自然语言处理·论文笔记
学习3人组5 分钟前
目标检测训练常见问题排查清单
人工智能·目标检测·计算机视觉
Coder_Boy_7 分钟前
基于SpringAI的智能AIOps项目:微服务与DDD多模块融合设计概述
java·运维·人工智能·微服务·faiss
Apache IoTDB13 分钟前
TsFile 开源文件格式:AI 时代工业时序数据集新选择,让数据资产“活”起来
人工智能·开源
com_4sapi15 分钟前
星链引擎4SAPICOM:全球API服务平台优选,助力企业高效连接智能生态
大数据·人工智能·云计算
yumgpkpm20 分钟前
银行的数据智能平台和Cloudera CDP 7.3(CMP 7.3)的技术对接
数据库·人工智能·hive·hadoop·elasticsearch·数据挖掘·kafka
雅欣鱼子酱23 分钟前
Type-C 终端应用里 给产品增加PD快充取电 PD取电诱骗芯片有什么推荐?
人工智能·单片机·芯片·电子元器件
liulanba24 分钟前
大模型训练参数调优完整指南
人工智能·深度学习
liulanba25 分钟前
AI Agent技术完整指南 第三部分:监控与管理
人工智能