QA-LORA: QUANTIZATION-AWARE LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

本文是LLM系列文章,针对《QA-LORA: QUANTIZATION-AWARE LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS》的翻译。

Qa-lora:大型语言模型的量化感知低秩自适应

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 提出的方法](#3 提出的方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

近年来,大型语言模型(llm)得到了迅速的发展。尽管llm在许多语言理解任务中具有很强的能力,但沉重的计算负担在很大程度上限制了llm的应用,特别是当需要将它们部署到边缘设备上时。本文提出了一种量化感知的低秩自适应(QA-LoRA)算法。其原因在于量化自由度与自适应自由度不平衡,解决方法是采用群算子,提高量化自由度,降低自适应自由度。QA-LoRA很容易用几行代码实现,它为原始LoRA提供了双重能力:(i)在微调期间,LLM的权重被量化(例如,进入INT4),以减少时间和内存使用;(ii)微调后,LLM和辅助权重自然地整合到一个量化模型中,而不损失精度。我们将QA-LoRA应用于LLaMA和LLaMA2模型家族,并在不同的微调数据集和下游场景中验证了其有效性。代码将在https://github.com/ yuhuixu1993/qa-lora上提供。

1 引言

2 相关工作

3 提出的方法

4 实验

5 结论

本文提出了一种将量化感知引入llm低秩自适应的有效方法------QA-LoRA。QA-LoRA的核心在于量化和低级别适应的分组操作,关键的洞察力来自于平衡这两个方面的自由度。QA-LoRA易于实现,可以跨各种基础模型和语言理解任务进行推广,并且在微调和推理阶段都具有计算效率。在LLaMA模型族上的大量实验验证了QA-LoRA的有效性。

相关推荐
蝎蟹居11 分钟前
GB/T 4706.1-2024 家用和类似用途电器的安全 第1部分:通用要求 与2005版差异(1)
人工智能·单片机·嵌入式硬件·物联网·安全
浊酒南街18 分钟前
TensorFlow实现逻辑回归
人工智能·tensorflow·逻辑回归
云卓SKYDROID28 分钟前
无人机遥测系统工作与技术难点分析!
人工智能·无人机·科普·高科技·云卓科技
Moutai码农36 分钟前
大模型-提示词(Prompt)技巧
人工智能·语言模型·prompt
Moutai码农39 分钟前
大模型-提示词(Prompt)最佳实践
人工智能·语言模型·prompt
阿巴阿巴拉40 分钟前
Scala简介与基础语法学习总结
人工智能
zxsz_com_cn1 小时前
风电行业预测性维护解决方案:AIoT驱动下的风机健康管理革命
大数据·运维·人工智能
Y1nhl2 小时前
搜广推校招面经六十四
人工智能·深度学习·leetcode·广告算法·推荐算法·搜索算法
禁默2 小时前
智能体开发基础:从概念到实现
人工智能·大模型·智能体