QA-LORA: QUANTIZATION-AWARE LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

本文是LLM系列文章,针对《QA-LORA: QUANTIZATION-AWARE LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS》的翻译。

Qa-lora:大型语言模型的量化感知低秩自适应

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 提出的方法](#3 提出的方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

近年来,大型语言模型(llm)得到了迅速的发展。尽管llm在许多语言理解任务中具有很强的能力,但沉重的计算负担在很大程度上限制了llm的应用,特别是当需要将它们部署到边缘设备上时。本文提出了一种量化感知的低秩自适应(QA-LoRA)算法。其原因在于量化自由度与自适应自由度不平衡,解决方法是采用群算子,提高量化自由度,降低自适应自由度。QA-LoRA很容易用几行代码实现,它为原始LoRA提供了双重能力:(i)在微调期间,LLM的权重被量化(例如,进入INT4),以减少时间和内存使用;(ii)微调后,LLM和辅助权重自然地整合到一个量化模型中,而不损失精度。我们将QA-LoRA应用于LLaMA和LLaMA2模型家族,并在不同的微调数据集和下游场景中验证了其有效性。代码将在https://github.com/ yuhuixu1993/qa-lora上提供。

1 引言

2 相关工作

3 提出的方法

4 实验

5 结论

本文提出了一种将量化感知引入llm低秩自适应的有效方法------QA-LoRA。QA-LoRA的核心在于量化和低级别适应的分组操作,关键的洞察力来自于平衡这两个方面的自由度。QA-LoRA易于实现,可以跨各种基础模型和语言理解任务进行推广,并且在微调和推理阶段都具有计算效率。在LLaMA模型族上的大量实验验证了QA-LoRA的有效性。

相关推荐
碳基学AI3 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四6 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
果冻人工智能20 分钟前
法官们终于似乎明白了:如果没有复制,那就没有版权
人工智能
tle_sammy21 分钟前
AI 重构老旧系统:创业新曙光
人工智能·重构
果冻人工智能23 分钟前
什么是 MCP,以及你为什么该关注它
人工智能
誉鏐28 分钟前
PyTorch复现逻辑回归
人工智能·pytorch·逻辑回归
正脉科工 CAE仿真30 分钟前
基于ANSYS 概率设计和APDL编程的结构可靠性设计分析
人工智能·python·算法
EasyGBS36 分钟前
视频设备轨迹回放平台EasyCVR打造视频智能融合新平台,驱动智慧机场迈向数字新时代
网络·人工智能·安全·音视频
Chaos_Wang_41 分钟前
NLP高频面试题(三十三)——Vision Transformer(ViT)模型架构介绍
人工智能·自然语言处理·transformer
新知图书1 小时前
OpenCV单窗口显示多图片
人工智能·opencv·计算机视觉