QA-LORA: QUANTIZATION-AWARE LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

本文是LLM系列文章,针对《QA-LORA: QUANTIZATION-AWARE LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS》的翻译。

Qa-lora:大型语言模型的量化感知低秩自适应

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 提出的方法](#3 提出的方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

近年来,大型语言模型(llm)得到了迅速的发展。尽管llm在许多语言理解任务中具有很强的能力,但沉重的计算负担在很大程度上限制了llm的应用,特别是当需要将它们部署到边缘设备上时。本文提出了一种量化感知的低秩自适应(QA-LoRA)算法。其原因在于量化自由度与自适应自由度不平衡,解决方法是采用群算子,提高量化自由度,降低自适应自由度。QA-LoRA很容易用几行代码实现,它为原始LoRA提供了双重能力:(i)在微调期间,LLM的权重被量化(例如,进入INT4),以减少时间和内存使用;(ii)微调后,LLM和辅助权重自然地整合到一个量化模型中,而不损失精度。我们将QA-LoRA应用于LLaMA和LLaMA2模型家族,并在不同的微调数据集和下游场景中验证了其有效性。代码将在https://github.com/ yuhuixu1993/qa-lora上提供。

1 引言

2 相关工作

3 提出的方法

4 实验

5 结论

本文提出了一种将量化感知引入llm低秩自适应的有效方法------QA-LoRA。QA-LoRA的核心在于量化和低级别适应的分组操作,关键的洞察力来自于平衡这两个方面的自由度。QA-LoRA易于实现,可以跨各种基础模型和语言理解任务进行推广,并且在微调和推理阶段都具有计算效率。在LLaMA模型族上的大量实验验证了QA-LoRA的有效性。

相关推荐
今天也想MK代码28 分钟前
基于WebRTC的实时语音对话系统:从语音识别到AI回复
人工智能·webrtc·语音识别
Vizio<1 小时前
基于CNN的猫狗识别(自定义CNN模型)
人工智能·笔记·深度学习·神经网络·cnn
kovlistudio1 小时前
机器学习第十三讲:独热编码 → 把“红黄蓝“颜色变成001/010/100的数字格式
人工智能·机器学习
豆豆1 小时前
机器学习 day03
人工智能·机器学习
qyresearch_1 小时前
砷化镓太阳能电池:开启多元领域能源新篇
人工智能
山海不说话1 小时前
深度学习(第3章——亚像素卷积和可形变卷积)
图像处理·人工智能·pytorch·深度学习·目标检测·计算机视觉·超分辨率重建
2201_754918411 小时前
深入理解 OpenCV 的 DNN 模块:从基础到实践
人工智能·opencv·dnn
-一杯为品-2 小时前
【深度学习】#12 计算机视觉
人工智能·深度学习·计算机视觉
蹦蹦跳跳真可爱5892 小时前
Python----神经网络(《Searching for MobileNetV3》论文概括和MobileNetV3网络)
人工智能·python·深度学习·神经网络
妄想成为master2 小时前
如何完美安装GPU版本的torch、torchvision----解决torch安装慢 无法安装 需要翻墙安装 安装的是GPU版本但无法使用的GPU的错误
人工智能·pytorch·python·环境配置