QA-LORA: QUANTIZATION-AWARE LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

本文是LLM系列文章,针对《QA-LORA: QUANTIZATION-AWARE LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS》的翻译。

Qa-lora:大型语言模型的量化感知低秩自适应

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 提出的方法](#3 提出的方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

近年来,大型语言模型(llm)得到了迅速的发展。尽管llm在许多语言理解任务中具有很强的能力,但沉重的计算负担在很大程度上限制了llm的应用,特别是当需要将它们部署到边缘设备上时。本文提出了一种量化感知的低秩自适应(QA-LoRA)算法。其原因在于量化自由度与自适应自由度不平衡,解决方法是采用群算子,提高量化自由度,降低自适应自由度。QA-LoRA很容易用几行代码实现,它为原始LoRA提供了双重能力:(i)在微调期间,LLM的权重被量化(例如,进入INT4),以减少时间和内存使用;(ii)微调后,LLM和辅助权重自然地整合到一个量化模型中,而不损失精度。我们将QA-LoRA应用于LLaMA和LLaMA2模型家族,并在不同的微调数据集和下游场景中验证了其有效性。代码将在https://github.com/ yuhuixu1993/qa-lora上提供。

1 引言

2 相关工作

3 提出的方法

4 实验

5 结论

本文提出了一种将量化感知引入llm低秩自适应的有效方法------QA-LoRA。QA-LoRA的核心在于量化和低级别适应的分组操作,关键的洞察力来自于平衡这两个方面的自由度。QA-LoRA易于实现,可以跨各种基础模型和语言理解任务进行推广,并且在微调和推理阶段都具有计算效率。在LLaMA模型族上的大量实验验证了QA-LoRA的有效性。

相关推荐
晚霞的不甘9 小时前
CANN:华为全栈AI计算框架的深度解析(终极扩展版 · 完整篇)
人工智能·华为
lisw0511 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_9416233213 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛13 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI13 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus13 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声13 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API13 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
咚咚王者13 小时前
人工智能之数据分析 numpy:第十三章 工具衔接与迁移
人工智能·数据分析·numpy
咚咚王者13 小时前
人工智能之数据分析 numpy:第九章 数组运算(二)
人工智能·数据分析·numpy