cuML机器学习GPU库

目录

一、开始安装

1、创建虚拟环境

2、激活该虚拟环境

3、安装cuML

4、安装ipykernel

5、在jupter上使用,所以需要配置一下新的内核

二、调试

1、原始机器学习库运行

2、cuml库运行


以下安装教程为基于Linux系统,cuda版本为11.3.109、驱动530.30.02

一、开始安装

1、创建虚拟环境
python 复制代码
conda create -n rapids python=3.9
2、激活该虚拟环境
python 复制代码
conda activate rapids
3、安装cuML

安装官网:Installation Guide - RAPIDS Docs

python 复制代码
pip install --default-time=300 --extra-index-url=https://pypi.nvidia.com cuml-cu11

到这里,我们就安装完成了。但是如果要使用jupter笔记本,我们继续安装。

4、安装ipykernel
python 复制代码
 pip install ipykernel
5、在jupter上使用,所以需要配置一下新的内核
python 复制代码
python -m ipykernel install --name rapids

如果安装错了运行如下命令删除内核

python 复制代码
jupyter kernelspec remove rapids

安装后,刷新网页即可看见新的内核的jupter笔记本

至此,jupter笔记本的环境也安装好了。

二、调试

先安装基础的机器学习库

python 复制代码
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn
1、原始机器学习库运行
python 复制代码
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import numpy as np
import time

X = np.random.random((1000000,70))
y = np.random.randint(0,2,1000000)

# 分割数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 初始化KNN分类器。这里选择邻居数为3。
knn = KNeighborsClassifier(n_neighbors=20)

# 使用训练数据拟合模型
start_time = time.time()  # 记录开始时间
knn.fit(X_train, y_train)

# 进行预测
y_pred = knn.predict(X_test)
end_time = time.time()  # 记录结束时间
elapsed_time = end_time - start_time  # 计算程序运行时间,单位为秒
# 将秒数转换为小时、分钟和秒数
hours = int(elapsed_time // 3600)
minutes = int((elapsed_time % 3600) // 60)
seconds = int(elapsed_time % 60)
print(f"程序运行时间:{hours}小时 {minutes}分钟 {seconds}秒\n")

# 评估预测的准确性
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

运行时间

2、cuml库运行

API查询链接: Welcome to cuML's documentation! --- cuml 23.08.00 documentation

点击右上角小放大镜,然后输入sklearn中KNN算法的API名称,即可有相关示例

python 复制代码
from sklearn.model_selection import train_test_split
# from sklearn.neighbors import KNeighborsClassifier
from cuml.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score
import numpy as np
import time

X = np.random.random((1000000,70))
y = np.random.randint(0,2,1000000)

# 分割数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 初始化KNN分类器。这里选择邻居数为3。
knn = KNeighborsClassifier(n_neighbors=20)

# 使用训练数据拟合模型
start_time = time.time()  # 记录开始时间
knn.fit(X_train, y_train)

# 进行预测
y_pred = knn.predict(X_test)
end_time = time.time()  # 记录结束时间
elapsed_time = end_time - start_time  # 计算程序运行时间,单位为秒
# 将秒数转换为小时、分钟和秒数
hours = int(elapsed_time // 3600)
minutes = int((elapsed_time % 3600) // 60)
seconds = int(elapsed_time % 60)
print(f"程序运行时间:{hours}小时 {minutes}分钟 {seconds}秒\n")


# 评估预测的准确性
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

运行时间

相关推荐
九年义务漏网鲨鱼1 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间1 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享1 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾2 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码2 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5892 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien2 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松3 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_13 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf
敲键盘的小夜猫3 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain