cuML机器学习GPU库

目录

一、开始安装

1、创建虚拟环境

2、激活该虚拟环境

3、安装cuML

4、安装ipykernel

5、在jupter上使用,所以需要配置一下新的内核

二、调试

1、原始机器学习库运行

2、cuml库运行


以下安装教程为基于Linux系统,cuda版本为11.3.109、驱动530.30.02

一、开始安装

1、创建虚拟环境
python 复制代码
conda create -n rapids python=3.9
2、激活该虚拟环境
python 复制代码
conda activate rapids
3、安装cuML

安装官网:Installation Guide - RAPIDS Docs

python 复制代码
pip install --default-time=300 --extra-index-url=https://pypi.nvidia.com cuml-cu11

到这里,我们就安装完成了。但是如果要使用jupter笔记本,我们继续安装。

4、安装ipykernel
python 复制代码
 pip install ipykernel
5、在jupter上使用,所以需要配置一下新的内核
python 复制代码
python -m ipykernel install --name rapids

如果安装错了运行如下命令删除内核

python 复制代码
jupyter kernelspec remove rapids

安装后,刷新网页即可看见新的内核的jupter笔记本

至此,jupter笔记本的环境也安装好了。

二、调试

先安装基础的机器学习库

python 复制代码
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn
1、原始机器学习库运行
python 复制代码
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import numpy as np
import time

X = np.random.random((1000000,70))
y = np.random.randint(0,2,1000000)

# 分割数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 初始化KNN分类器。这里选择邻居数为3。
knn = KNeighborsClassifier(n_neighbors=20)

# 使用训练数据拟合模型
start_time = time.time()  # 记录开始时间
knn.fit(X_train, y_train)

# 进行预测
y_pred = knn.predict(X_test)
end_time = time.time()  # 记录结束时间
elapsed_time = end_time - start_time  # 计算程序运行时间,单位为秒
# 将秒数转换为小时、分钟和秒数
hours = int(elapsed_time // 3600)
minutes = int((elapsed_time % 3600) // 60)
seconds = int(elapsed_time % 60)
print(f"程序运行时间:{hours}小时 {minutes}分钟 {seconds}秒\n")

# 评估预测的准确性
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

运行时间

2、cuml库运行

API查询链接: Welcome to cuML's documentation! --- cuml 23.08.00 documentation

点击右上角小放大镜,然后输入sklearn中KNN算法的API名称,即可有相关示例

python 复制代码
from sklearn.model_selection import train_test_split
# from sklearn.neighbors import KNeighborsClassifier
from cuml.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score
import numpy as np
import time

X = np.random.random((1000000,70))
y = np.random.randint(0,2,1000000)

# 分割数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 初始化KNN分类器。这里选择邻居数为3。
knn = KNeighborsClassifier(n_neighbors=20)

# 使用训练数据拟合模型
start_time = time.time()  # 记录开始时间
knn.fit(X_train, y_train)

# 进行预测
y_pred = knn.predict(X_test)
end_time = time.time()  # 记录结束时间
elapsed_time = end_time - start_time  # 计算程序运行时间,单位为秒
# 将秒数转换为小时、分钟和秒数
hours = int(elapsed_time // 3600)
minutes = int((elapsed_time % 3600) // 60)
seconds = int(elapsed_time % 60)
print(f"程序运行时间:{hours}小时 {minutes}分钟 {seconds}秒\n")


# 评估预测的准确性
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

运行时间

相关推荐
G.E.N.28 分钟前
开源!RAG竞技场(2):标准RAG算法
大数据·人工智能·深度学习·神经网络·算法·llm·rag
西西弗Sisyphus37 分钟前
如果让计算机理解人类语言- Word2Vec(Word to Vector,2013)
人工智能·word·word2vec
前端双越老师1 小时前
30 行代码 langChain.js 开发你的第一个 Agent
人工智能·node.js·agent
东坡肘子1 小时前
高温与奇怪的天象 | 肘子的 Swift 周报 #092
人工智能·swiftui·swift
KaneLogger2 小时前
视频转文字,别再反复拖进度条了
前端·javascript·人工智能
度假的小鱼2 小时前
从 “人工编码“ 到 “AI 协同“:大模型如何重塑软件开发的效率与范式
人工智能
zm-v-159304339863 小时前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室4 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI4 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日20064 小时前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频