私密离线聊天新体验!llama-gpt聊天机器人:极速、安全、搭载Llama 2,尽享Code Llama支持!

"私密离线聊天新体验!llama-gpt聊天机器人:极速、安全、搭载Llama 2,尽享Code Llama支持!"

一个自托管的、离线的、类似chatgpt的聊天机器人。由美洲驼提供动力。100%私密,没有数据离开您的设备。

Demo

github.com/getumbrel/l...

1.支持模型

Currently, LlamaGPT supports the following models. Support for running custom models is on the roadmap.

Model name Model size Model download size Memory required
Nous Hermes Llama 2 7B Chat (GGML q4_0) 7B 3.79GB 6.29GB
Nous Hermes Llama 2 13B Chat (GGML q4_0) 13B 7.32GB 9.82GB
Nous Hermes Llama 2 70B Chat (GGML q4_0) 70B 38.87GB 41.37GB
Code Llama 7B Chat (GGUF Q4_K_M) 7B 4.24GB 6.74GB
Code Llama 13B Chat (GGUF Q4_K_M) 13B 8.06GB 10.56GB
Phind Code Llama 34B Chat (GGUF Q4_K_M) 34B 20.22GB 22.72GB

1.1 安装LlamaGPT 在 umbrelOS

Running LlamaGPT on an umbrelOS home server is one click. Simply install it from the Umbrel App Store.

1.2 安装LlamaGPT on M1/M2 Mac

Make sure your have Docker and Xcode installed.

Then, clone this repo and cd into it:

bash 复制代码
git clone https://github.com/getumbrel/llama-gpt.git
cd llama-gpt

Run LlamaGPT with the following command:

arduino 复制代码
./run-mac.sh --model 7b

You can access LlamaGPT at http://localhost:3000.

To run 13B or 70B chat models, replace 7b with 13b or 70b respectively. To run 7B, 13B or 34B Code Llama models, replace 7b with code-7b, code-13b or code-34b respectively.

To stop LlamaGPT, do Ctrl + C in Terminal.

1.3 在 Docker上安装

You can run LlamaGPT on any x86 or arm64 system. Make sure you have Docker installed.

Then, clone this repo and cd into it:

bash 复制代码
git clone https://github.com/getumbrel/llama-gpt.git
cd llama-gpt

Run LlamaGPT with the following command:

arduino 复制代码
./run.sh --model 7b

Or if you have an Nvidia GPU, you can run LlamaGPT with CUDA support using the --with-cuda flag, like:

css 复制代码
./run.sh --model 7b --with-cuda

You can access LlamaGPT at http://localhost:3000.

To run 13B or 70B chat models, replace 7b with 13b or 70b respectively. To run Code Llama 7B, 13B or 34B models, replace 7b with code-7b, code-13b or code-34b respectively.

To stop LlamaGPT, do Ctrl + C in Terminal.

Note: On the first run, it may take a while for the model to be downloaded to the /models directory. You may also see lots of output like this for a few minutes, which is normal:

css 复制代码
llama-gpt-llama-gpt-ui-1       | [INFO  wait] Host [llama-gpt-api-13b:8000] not yet available...

After the model has been automatically downloaded and loaded, and the API server is running, you'll see an output like:

arduino 复制代码
llama-gpt-ui_1   | ready - started server on 0.0.0.0:3000, url: http://localhost:3000

You can then access LlamaGPT at http://localhost:3000.


1.4 在Kubernetes安装

First, make sure you have a running Kubernetes cluster and kubectl is configured to interact with it.

Then, clone this repo and cd into it.

To deploy to Kubernetes first create a namespace:

bash 复制代码
kubectl create ns llama

Then apply the manifests under the /deploy/kubernetes directory with

bash 复制代码
kubectl apply -k deploy/kubernetes/. -n llama

Expose your service however you would normally do that.

2.OpenAI兼容API

Thanks to llama-cpp-python, a drop-in replacement for OpenAI API is available at http://localhost:3001. Open http://localhost:3001/docs to see the API documentation.

  • 基线

We've tested LlamaGPT models on the following hardware with the default system prompt, and user prompt: "How does the universe expand?" at temperature 0 to guarantee deterministic results. Generation speed is averaged over the first 10 generations.

Feel free to add your own benchmarks to this table by opening a pull request.

2.1 Nous Hermes Llama 2 7B Chat (GGML q4_0)

Device Generation speed
M1 Max MacBook Pro (64GB RAM) 54 tokens/sec
GCP c2-standard-16 vCPU (64 GB RAM) 16.7 tokens/sec
Ryzen 5700G 4.4GHz 4c (16 GB RAM) 11.50 tokens/sec
GCP c2-standard-4 vCPU (16 GB RAM) 4.3 tokens/sec
Umbrel Home (16GB RAM) 2.7 tokens/sec
Raspberry Pi 4 (8GB RAM) 0.9 tokens/sec

2.2 Nous Hermes Llama 2 13B Chat (GGML q4_0)

Device Generation speed
M1 Max MacBook Pro (64GB RAM) 20 tokens/sec
GCP c2-standard-16 vCPU (64 GB RAM) 8.6 tokens/sec
GCP c2-standard-4 vCPU (16 GB RAM) 2.2 tokens/sec
Umbrel Home (16GB RAM) 1.5 tokens/sec

2.3 Nous Hermes Llama 2 70B Chat (GGML q4_0)

Device Generation speed
M1 Max MacBook Pro (64GB RAM) 4.8 tokens/sec
GCP e2-standard-16 vCPU (64 GB RAM) 1.75 tokens/sec
GCP c2-standard-16 vCPU (64 GB RAM) 1.62 tokens/sec

2.4 Code Llama 7B Chat (GGUF Q4_K_M)

Device Generation speed
M1 Max MacBook Pro (64GB RAM) 41 tokens/sec

2.5 Code Llama 13B Chat (GGUF Q4_K_M)

Device Generation speed
M1 Max MacBook Pro (64GB RAM) 25 tokens/sec

2.6 Phind Code Llama 34B Chat (GGUF Q4_K_M)

Device Generation speed
M1 Max MacBook Pro (64GB RAM) 10.26 tokens/sec

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关推荐
正脉科工 CAE仿真35 分钟前
抗震计算 | 基于随机振动理论的结构地震响应计算
人工智能
看到我,请让我去学习37 分钟前
OpenCV编程- (图像基础处理:噪声、滤波、直方图与边缘检测)
c语言·c++·人工智能·opencv·计算机视觉
码字的字节39 分钟前
深度解析Computer-Using Agent:AI如何像人类一样操作计算机
人工智能·computer-using·ai操作计算机·cua
说私域2 小时前
互联网生态下赢家群体的崛起与“开源AI智能名片链动2+1模式S2B2C商城小程序“的赋能效应
人工智能·小程序·开源
董厂长5 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
G皮T8 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼9 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间9 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享9 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾9 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性