CSP模拟52联测14 C.天竺葵

CSP模拟52联测14 C.天竺葵

文章目录

题目大意

给定两个长度为 n n n 的序列 a , b a , b a,b

需要在 a a a 序列中好到最长的序列 c c c 满足 c i + 1 > b i × c i c _{i + 1} > b_i \times c_i ci+1>bi×ci

输出长度

1 ≤ n ≤ 1 0 6 1\le n\le 10^6 1≤n≤106

思路

感觉和 n ( log ⁡ n ) n(\log n) n(logn) 求最长上升子序列差不多

考虑 d p dp dp

设 d p i dp_i dpi 为第 c i c_i ci 的最小值

朴素的转移是 O ( n 2 ) O(n^2) O(n2) 的

70分代码

cpp 复制代码
#include <bits/stdc++.h>
#define fu(x , y , z) for(int x = y ; x <= z ; x ++)

#define LL long long

using namespace std;
const int N = 1e6 + 5;
const LL inf = 1e12 + 5;
int n , ans , ans1 , lis[N] , len;
LL f[N] , a[N] , b[N] , min1;
int fans (int l , int r , LL x) {
    if (l == r) {
        return a[lis[l]] > x ? l : inf;
    }
    else {
        int mid = l + r >> 1;
        if (a[lis[mid]] >= x) return min (mid , fans (l , mid , x));
        else return fans (mid + 1 , r , x);
    }
}
int main () {
    freopen ("C.in" , "r" , stdin);
    freopen ("C.out" , "w" , stdout);
    int flg = 0 , x;
    scanf ("%d" , &n);
    fu (i , 1 , n) scanf ("%lld" , &a[i]);
    fu (i , 1 , n) {
        scanf ("%lld" , &b[i]);
        if (b[i] != 1) flg = 1;
    }
    if (!flg) {
        lis[len = 1] = 1;
        fu (i , 2 , n) {
            if (a[lis[len]] < a[i]) {
                lis[++len] = i;
                continue;
            }
            x = fans (1 , len , a[i]);
            lis[x] = i; 
        }
        printf ("%d" , len);
        return 0;
    }
    ans = 1 , f[1] = a[1];
    min1 = a[1];
    fu (i , 2 , n) f[i] = 1e12 + 5;
    fu (i , 2 , n) {
        ans1 = 0;
        fu (j , 1 , ans + 1) {
            if (a[i] > f[j - 1] * b[j - 1]) {
                f[j] = min (f[j] , a[i]);
                ans1 = max(ans1 , j);
            }
        }
        min1 = min (min1 , a[i]);
        ans = max (ans , ans1);
    }
    printf ("%d" , ans);
    return 0;
}

我们发现是转移的时候太慢了。

假设当前要处理的是 a i a_i ai

我们把现在的 d p dp dp 分成两部分前 k k k 个是小于 a i a_i ai 的,后 k k k 个是大于 a i a_i ai 的

因为 d p 1 → k ≤ a i dp_{1\to k} \le a_i dp1→k≤ai ,所以 min_{j = 1 }\^k (dp_j ,a_i)= dp_i

因为 d p k + 1 → l e n > a i dp_{k + 1 \to len} > a_i dpk+1→len>ai ,所以 a i < d p j ∗ b j ( j ∈ [ k + 1 , l e n ] ) a_i < dp_j *b_j (j\in[k + 1 , len]) ai<dpj∗bj(j∈[k+1,len])

所以现在要更新的就只有 d p k dp_k dpk

直接遍历一遍,二分查找 k k k 就好了

时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)

code

cpp 复制代码
#include <bits/stdc++.h>
#define fu(x , y , z) for(int x = y ; x <= z ; x ++)
#define LL long long
using namespace std;
const int N = 1e7 + 5;
const LL inf = 1e12 + 5;
int n , ans , ans1 , lis[N] , len;
__int128 f[N] , a[N] , b[N] , min1;
int fans (int l , int r , LL x) {
    if (l == r) {
        return a[lis[l]] > x ? l : inf;
    }
    else {
        int mid = l + r >> 1;
        if (a[lis[mid]] >= x) return min (mid , fans (l , mid , x));
        else return fans (mid + 1 , r , x);
    }
}
int main () {
    freopen ("C.in" , "r" , stdin);
    freopen ("C.out" , "w" , stdout);
    LL x;
    scanf ("%d" , &n);
    fu (i , 1 , n) scanf ("%lld" , &x) , a[i] = x;
    fu (i , 1 , n) scanf ("%lld" , &x) , b[i] = x;
    int k;
    ans = 1 , f[1] = a[1];
    min1 = a[1];
    fu (i , 2 , n) {
        k = lower_bound(f + 1 , f + ans + 1 , a[i]) - f - 1;
        if (k == ans) {
            if (a[i] > b[ans] * f[ans]) f[++ans] = a[i];
        }
        else {
            if (a[i] > b[k] * f[k]) f[k + 1] = a[i];
        }
    }
    printf ("%d" , ans);
    return 0;
}
相关推荐
培风图南以星河揽胜1 小时前
Java版LeetCode热题100之零钱兑换:动态规划经典问题深度解析
java·leetcode·动态规划
想进个大厂7 小时前
代码随想录day32 动态规划01
算法·动态规划
Ronaldinho Gaúch11 小时前
leetcode279完全平方数
c++·算法·动态规划
代码无bug抓狂人12 小时前
动态规划习题篇(不同路径和整数拆分)
算法·动态规划
代码无bug抓狂人1 天前
动态规划(附带入门例题)
c语言·算法·动态规划
Snow_day.1 天前
有关线段树应用(1)
数据结构·算法·贪心算法·动态规划·图论
yzp-1 天前
动态规划-------- dp数组套路学习
学习·算法·动态规划
好易学·数据结构1 天前
可视化图解算法78:整数拆分
数据结构·算法·leetcode·面试·动态规划·笔试·机试
Wuliwuliii3 天前
高维子集和&子集染色问题
动态规划·dp·子集·子集和·多维子集和
Tisfy3 天前
LeetCode 3651.带传送的最小路径成本:动态规划
算法·leetcode·动态规划·题解·排序