AXI4Arbiter object scala code reading

object AXI4Arbiter

{

def apply[T <: Data](policy: TLArbiter.Policy)(sink: IrrevocableIO[T], sources: IrrevocableIO[T]*): Unit = {

if (sources.isEmpty) {

sink.valid := false.B

} else {

returnWinner(policy)(sink, sources:_*)

}

}

def returnWinner[T <: Data](policy: TLArbiter.Policy)(sink: IrrevocableIO[T], sources: IrrevocableIO[T]*) = {

require (!sources.isEmpty)

// The arbiter is irrevocable; when !idle, repeat last request

val idle = RegInit(true.B)

// Who wants access to the sink?

val valids = sources.map(_.valid)

val anyValid = valids.reduce(_ || _)

// Arbitrate amongst the requests

val readys = VecInit(policy(valids.size, Cat(valids.reverse), idle).asBools)

// Which request wins arbitration?

val winner = VecInit((readys zip valids) map { case (r,v) => r&&v })

// Confirm the policy works properly

require (readys.size == valids.size)

// Never two winners

val prefixOR = winner.scanLeft(false.B)(||).init

assert((prefixOR zip winner) map { case (p,w) => !p || !w } reduce {_ && _})

// If there was any request, there is a winner

assert (!anyValid || winner.reduce(||))

// The one-hot source granted access in the previous cycle

val state = RegInit(VecInit.fill(sources.size)(false.B))

val muxState = Mux(idle, winner, state)

state := muxState

// Determine when we go idle

when (anyValid) { idle := false.B }

when (sink.fire) { idle := true.B }

if (sources.size > 1) {

val allowed = Mux(idle, readys, state)

(sources zip allowed) foreach { case (s, r) =>

s.ready := sink.ready && r

}

} else {

sources(0).ready := sink.ready

}

sink.valid := Mux(idle, anyValid, Mux1H(state, valids))

sink.bits :<= Mux1H(muxState, sources.map(_.bits))

muxState

}

}

相关推荐
小伍_Five2 天前
Spark实战能力测评模拟题精析【模拟考】
java·大数据·spark·scala·intellij-idea
黄雪超2 天前
DataStreamAPI实践原理——快速上手(实操详细版)
大数据·flink·scala
白总Server4 天前
C++语法架构解说
java·网络·c++·网络协议·架构·golang·scala
vortex54 天前
Perl One-liner 数据处理——基础语法篇【匠心】
开发语言·scala·perl
老兵发新帖6 天前
Coursier:安装sbt
scala
请你喝好果汁6419 天前
indel_snp_ssr_primer
大数据·开发语言·scala
MZWeiei12 天前
Spark 中,map和foreach的区别
大数据·分布式·spark·scala
MZWeiei13 天前
区分:union(),coalesce () 和 repartition ()
大数据·分布式·spark·scala
北漂老男孩13 天前
Scala与Spark:原理、实践与技术全景详解
大数据·开发语言·spark·scala·学习方法
MZWeiei13 天前
Spark 中,创建 DataFrame 的方式(Scala语言)
大数据·分布式·spark·scala