Pytorch深度学习—FashionMNIST数据集训练

文章目录

FashionMNIST数据集

  • FashionMNIST(时尚 MNIST)是一个用于图像分类的数据集,旨在替代传统的手写数字MNIST数据集。它由 Zalando Research 创建,适用于深度学习和计算机视觉的实验。
    • FashionMNIST 包含 10 个类别,分别对应不同的时尚物品。这些类别包括 T恤/上衣、裤子、套头衫、裙子、外套、凉鞋、衬衫、运动鞋、包和踝靴。
    • 每个类别有 6,000 张训练图像和 1,000 张测试图像,总计 70,000 张图像。
    • 每张图像的尺寸为 28x28 像素,与MNIST数据集相同。
    • 数据集中的每个图像都是灰度图像,像素值在0到255之间。

需求库导入、数据迭代器生成

python 复制代码
import os
import random
import numpy as np
import datetime
import torch
import torch.nn as nn
from torch.utils.data import DataLoader

import torchvision
from torchvision import transforms

import argparse
from tqdm import tqdm

import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter


def _load_data():
    """download the data, and generate the dataloader"""
    trans = transforms.Compose([transforms.ToTensor()])

    train_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=True, download=True, transform=trans)
    test_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=False, download=True, transform=trans)
    # print(len(train_dataset), len(test_dataset))
    train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)
    test_loader = DataLoader(test_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)

    return (train_loader, test_loader)

设备选择

python 复制代码
def _device():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    return device

样例图片展示

python 复制代码
"""display data examples"""
def _image_label(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                  'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def _show_images(imgs, rows, columns, titles=None, scale=1.5):
    figsize = (rows * scale, columns * 1.5)
    fig, axes = plt.subplots(rows, columns, figsize=figsize)
    axes = axes.flatten()
    for i, (img, ax) in enumerate(zip(imgs, axes)):
        ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    plt.show()
    return axes

def _show_examples():
    train_loader, test_loader = _load_data()

    for images, labels in train_loader:
        images = images.squeeze(1)
        _show_images(images, 3, 3, _image_label(labels))
        break

日志写入

python 复制代码
class _logger():
    def __init__(self, log_dir, log_history=True):
        if log_history:
            log_dir = os.path.join(log_dir, datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S"))
        self.summary = SummaryWriter(log_dir)

    def scalar_summary(self, tag, value, step):
        self.summary.add_scalars(tag, value, step)

    def images_summary(self, tag, image_tensor, step):
        self.summary.add_images(tag, image_tensor, step)

    def figure_summary(self, tag, figure, step):
        self.summary.add_figure(tag, figure, step)

    def graph_summary(self, model):
        self.summary.add_graph(model)

    def close(self):
        self.summary.close()

评估---计数器

python 复制代码
class AverageMeter():
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

模型构建

python 复制代码
class Conv3x3(nn.Module):
    def __init__(self, in_channels, out_channels, down_sample=False):
        super(Conv3x3, self).__init__()
        self.conv = nn.Sequential(nn.Conv2d(in_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True),
                                  nn.Conv2d(out_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True))
        if down_sample:
            self.conv[3] = nn.Conv2d(out_channels, out_channels, 2, 2, 0)

    def forward(self, x):
        return self.conv(x)

class SimpleNet(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(SimpleNet, self).__init__()
        self.conv1 = Conv3x3(in_channels, 32)
        self.conv2 = Conv3x3(32, 64, down_sample=True)
        self.conv3 = Conv3x3(64, 128)
        self.conv4 = Conv3x3(128, 256, down_sample=True)
        self.fc = nn.Linear(256*7*7, out_channels)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)

        x = torch.flatten(x, 1)
        out = self.fc(x)
        return out

训练函数

python 复制代码
def train(model, train_loader, test_loader, criterion, optimizor, epochs, device, writer, save_weight=False):
    train_loss = AverageMeter()
    test_loss = AverageMeter()
    train_precision = AverageMeter()
    test_precision = AverageMeter()

    time_tick = datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S")

    for epoch in range(epochs):
        print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, args.lr))
        model.train()
        for input, label in tqdm(train_loader):
            input, label = input.to(device), label.to(device)
            output = model(input)
            # backward
            loss = criterion(output, label)
            optimizor.zero_grad()
            loss.backward()
            optimizor.step()

            # logger
            predict = torch.argmax(output, dim=1)
            train_pre = sum(predict == label) / len(label)
            train_loss.update(loss.item(), input.size(0))
            train_precision.update(train_pre.item(), input.size(0))

        model.eval()
        with torch.no_grad():
            for X, y in tqdm(test_loader):
                X, y = X.to(device), y.to(device)
                y_hat = model(X)

                loss_te = criterion(y_hat, y)
                predict_ = torch.argmax(y_hat, dim=1)
                test_pre = sum(predict_ == y) / len(y)

                test_loss.update(loss_te.item(), X.size(0))
                test_precision.update(test_pre.item(), X.size(0))

        if save_weight:
            best_dice = args.best_dice
            weight_dir = os.path.join(args.weight_dir, args.model, time_tick)
            os.makedirs(weight_dir, exist_ok=True)

            monitor_dice = test_precision.avg
            if monitor_dice > best_dice:
                best_dice = max(monitor_dice, best_dice)

                name = os.path.join(weight_dir, args.model + '_' + str(epoch) + \
                       '_test_loss-' + str(round(test_loss.avg, 4)) + \
                       '_test_dice-' + str(round(best_dice, 4)) + '.pt')
                torch.save(model.state_dict(), name)

        print("train" + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=train_loss.avg, dice=train_precision.avg))
        print("test " + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=test_loss.avg, dice=test_precision.avg))

        # summary
        writer.scalar_summary("Loss/loss", {"train": train_loss.avg, "test": test_loss.avg}, epoch)
        writer.scalar_summary("Loss/precision", {"train": train_precision.avg, "test": test_precision.avg}, epoch)

        writer.close()

整体代码

python 复制代码
import os
import random
import numpy as np
import datetime
import torch
import torch.nn as nn
from torch.utils.data import DataLoader

import torchvision
from torchvision import transforms

import argparse
from tqdm import tqdm

import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter

"""Reproduction experiment"""
def setup_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    # torch.backends.cudnn.benchmark = False
    # torch.backends.cudnn.enabled = False
    # torch.backends.cudnn.deterministic = True


"""data related"""
def _base_options():
    parser = argparse.ArgumentParser(description="Train setting for FashionMNIST")
    # about dataset
    parser.add_argument('--batch_size', default=8, type=int, help='the batch size of dataset')
    parser.add_argument('--num_works', default=4, type=int, help="the num_works used")
    # train
    parser.add_argument('--epochs', default=100, type=int, help='train iterations')
    parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
    parser.add_argument('--model', default="SimpleNet", choices=["SimpleNet"], help="the model choosed")
    # log dir
    parser.add_argument('--log_dir', default="./logger/", help='the path of log file')
    #
    parser.add_argument('--best_dice', default=-100, type=int, help='for save weight')
    parser.add_argument('--weight_dir', default="./weight/", help='the dir for save weight')

    args = parser.parse_args()
    return args

def _load_data():
    """download the data, and generate the dataloader"""
    trans = transforms.Compose([transforms.ToTensor()])

    train_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=True, download=True, transform=trans)
    test_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=False, download=True, transform=trans)
    # print(len(train_dataset), len(test_dataset))
    train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)
    test_loader = DataLoader(test_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)

    return (train_loader, test_loader)

def _device():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    return device

"""display data examples"""
def _image_label(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                  'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def _show_images(imgs, rows, columns, titles=None, scale=1.5):
    figsize = (rows * scale, columns * 1.5)
    fig, axes = plt.subplots(rows, columns, figsize=figsize)
    axes = axes.flatten()
    for i, (img, ax) in enumerate(zip(imgs, axes)):
        ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    plt.show()
    return axes

def _show_examples():
    train_loader, test_loader = _load_data()

    for images, labels in train_loader:
        images = images.squeeze(1)
        _show_images(images, 3, 3, _image_label(labels))
        break

"""log"""
class _logger():
    def __init__(self, log_dir, log_history=True):
        if log_history:
            log_dir = os.path.join(log_dir, datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S"))
        self.summary = SummaryWriter(log_dir)

    def scalar_summary(self, tag, value, step):
        self.summary.add_scalars(tag, value, step)

    def images_summary(self, tag, image_tensor, step):
        self.summary.add_images(tag, image_tensor, step)

    def figure_summary(self, tag, figure, step):
        self.summary.add_figure(tag, figure, step)

    def graph_summary(self, model):
        self.summary.add_graph(model)

    def close(self):
        self.summary.close()

"""evaluate the result"""
class AverageMeter():
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


"""define the Net"""
class Conv3x3(nn.Module):
    def __init__(self, in_channels, out_channels, down_sample=False):
        super(Conv3x3, self).__init__()
        self.conv = nn.Sequential(nn.Conv2d(in_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True),
                                  nn.Conv2d(out_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True))
        if down_sample:
            self.conv[3] = nn.Conv2d(out_channels, out_channels, 2, 2, 0)

    def forward(self, x):
        return self.conv(x)

class SimpleNet(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(SimpleNet, self).__init__()
        self.conv1 = Conv3x3(in_channels, 32)
        self.conv2 = Conv3x3(32, 64, down_sample=True)
        self.conv3 = Conv3x3(64, 128)
        self.conv4 = Conv3x3(128, 256, down_sample=True)
        self.fc = nn.Linear(256*7*7, out_channels)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)

        x = torch.flatten(x, 1)
        out = self.fc(x)
        return out

"""progress of train/test"""
def train(model, train_loader, test_loader, criterion, optimizor, epochs, device, writer, save_weight=False):
    train_loss = AverageMeter()
    test_loss = AverageMeter()
    train_precision = AverageMeter()
    test_precision = AverageMeter()

    time_tick = datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S")

    for epoch in range(epochs):
        print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, args.lr))
        model.train()
        for input, label in tqdm(train_loader):
            input, label = input.to(device), label.to(device)
            output = model(input)
            # backward
            loss = criterion(output, label)
            optimizor.zero_grad()
            loss.backward()
            optimizor.step()

            # logger
            predict = torch.argmax(output, dim=1)
            train_pre = sum(predict == label) / len(label)
            train_loss.update(loss.item(), input.size(0))
            train_precision.update(train_pre.item(), input.size(0))

        model.eval()
        with torch.no_grad():
            for X, y in tqdm(test_loader):
                X, y = X.to(device), y.to(device)
                y_hat = model(X)

                loss_te = criterion(y_hat, y)
                predict_ = torch.argmax(y_hat, dim=1)
                test_pre = sum(predict_ == y) / len(y)

                test_loss.update(loss_te.item(), X.size(0))
                test_precision.update(test_pre.item(), X.size(0))

        if save_weight:
            best_dice = args.best_dice
            weight_dir = os.path.join(args.weight_dir, args.model, time_tick)
            os.makedirs(weight_dir, exist_ok=True)

            monitor_dice = test_precision.avg
            if monitor_dice > best_dice:
                best_dice = max(monitor_dice, best_dice)

                name = os.path.join(weight_dir, args.model + '_' + str(epoch) + \
                       '_test_loss-' + str(round(test_loss.avg, 4)) + \
                       '_test_dice-' + str(round(best_dice, 4)) + '.pt')
                torch.save(model.state_dict(), name)

        print("train" + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=train_loss.avg, dice=train_precision.avg))
        print("test " + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=test_loss.avg, dice=test_precision.avg))

        # summary
        writer.scalar_summary("Loss/loss", {"train": train_loss.avg, "test": test_loss.avg}, epoch)
        writer.scalar_summary("Loss/precision", {"train": train_precision.avg, "test": test_precision.avg}, epoch)

        writer.close()




if __name__ == "__main__":
    # config
    args = _base_options()
    device = _device()
    # data
    train_loader, test_loader = _load_data()
    # logger
    writer = _logger(log_dir=os.path.join(args.log_dir, args.model))
    # model
    model = SimpleNet(in_channels=1, out_channels=10).to(device)
    optimizor = torch.optim.Adam(model.parameters(), lr=args.lr)
    criterion = nn.CrossEntropyLoss()

    train(model, train_loader, test_loader, criterion, optimizor, args.epochs, device, writer, save_weight=True)


"""    
    args = _base_options()
    _show_examples()  # --------->  样例图片显示
"""

训练过程

日志

相关推荐
熊猫在哪15 分钟前
野火鲁班猫(arrch64架构debian)从零实现用MobileFaceNet算法进行实时人脸识别(一)conda环境搭建
linux·人工智能·python·嵌入式硬件·神经网络·机器学习·边缘计算
技能咖1 小时前
人工智能解析:技术革命下的认知重构
人工智能·重构
腾讯云qcloud07551 小时前
腾讯位置服务重构出行行业的技术底层逻辑
人工智能·重构·智慧城市
Stuomasi_xiaoxin1 小时前
FFmpeg 超级详细安装与配置教程(Windows 系统)
python·深度学习·ai·ffmpeg
拓端研究室TRL1 小时前
MATLAB贝叶斯超参数优化LSTM预测设备寿命应用——以航空发动机退化数据为例
开发语言·人工智能·rnn·matlab·lstm
__Benco1 小时前
OpenHarmony外设驱动使用 (五),Fingerprint_auth
人工智能·驱动开发·harmonyos
桃花键神1 小时前
从 0 到 1:用 Trae 插件 Builder 模式开发端午包粽子小游戏
人工智能·trae
庞德公2 小时前
PARSCALE:大语言模型的第三种扩展范式
人工智能·计算机视觉·大模型·并行计算·moe
scdifsn2 小时前
动手学深度学习12.6. 多GPU的简洁实现-笔记&练习(PyTorch)
pytorch·笔记·深度学习
AI.NET 极客圈3 小时前
AI与.NET技术实操系列(六):实现图像分类模型的部署与调用
人工智能·分类·.net