Pytorch深度学习—FashionMNIST数据集训练

文章目录

FashionMNIST数据集

  • FashionMNIST(时尚 MNIST)是一个用于图像分类的数据集,旨在替代传统的手写数字MNIST数据集。它由 Zalando Research 创建,适用于深度学习和计算机视觉的实验。
    • FashionMNIST 包含 10 个类别,分别对应不同的时尚物品。这些类别包括 T恤/上衣、裤子、套头衫、裙子、外套、凉鞋、衬衫、运动鞋、包和踝靴。
    • 每个类别有 6,000 张训练图像和 1,000 张测试图像,总计 70,000 张图像。
    • 每张图像的尺寸为 28x28 像素,与MNIST数据集相同。
    • 数据集中的每个图像都是灰度图像,像素值在0到255之间。

需求库导入、数据迭代器生成

python 复制代码
import os
import random
import numpy as np
import datetime
import torch
import torch.nn as nn
from torch.utils.data import DataLoader

import torchvision
from torchvision import transforms

import argparse
from tqdm import tqdm

import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter


def _load_data():
    """download the data, and generate the dataloader"""
    trans = transforms.Compose([transforms.ToTensor()])

    train_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=True, download=True, transform=trans)
    test_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=False, download=True, transform=trans)
    # print(len(train_dataset), len(test_dataset))
    train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)
    test_loader = DataLoader(test_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)

    return (train_loader, test_loader)

设备选择

python 复制代码
def _device():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    return device

样例图片展示

python 复制代码
"""display data examples"""
def _image_label(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                  'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def _show_images(imgs, rows, columns, titles=None, scale=1.5):
    figsize = (rows * scale, columns * 1.5)
    fig, axes = plt.subplots(rows, columns, figsize=figsize)
    axes = axes.flatten()
    for i, (img, ax) in enumerate(zip(imgs, axes)):
        ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    plt.show()
    return axes

def _show_examples():
    train_loader, test_loader = _load_data()

    for images, labels in train_loader:
        images = images.squeeze(1)
        _show_images(images, 3, 3, _image_label(labels))
        break

日志写入

python 复制代码
class _logger():
    def __init__(self, log_dir, log_history=True):
        if log_history:
            log_dir = os.path.join(log_dir, datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S"))
        self.summary = SummaryWriter(log_dir)

    def scalar_summary(self, tag, value, step):
        self.summary.add_scalars(tag, value, step)

    def images_summary(self, tag, image_tensor, step):
        self.summary.add_images(tag, image_tensor, step)

    def figure_summary(self, tag, figure, step):
        self.summary.add_figure(tag, figure, step)

    def graph_summary(self, model):
        self.summary.add_graph(model)

    def close(self):
        self.summary.close()

评估---计数器

python 复制代码
class AverageMeter():
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

模型构建

python 复制代码
class Conv3x3(nn.Module):
    def __init__(self, in_channels, out_channels, down_sample=False):
        super(Conv3x3, self).__init__()
        self.conv = nn.Sequential(nn.Conv2d(in_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True),
                                  nn.Conv2d(out_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True))
        if down_sample:
            self.conv[3] = nn.Conv2d(out_channels, out_channels, 2, 2, 0)

    def forward(self, x):
        return self.conv(x)

class SimpleNet(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(SimpleNet, self).__init__()
        self.conv1 = Conv3x3(in_channels, 32)
        self.conv2 = Conv3x3(32, 64, down_sample=True)
        self.conv3 = Conv3x3(64, 128)
        self.conv4 = Conv3x3(128, 256, down_sample=True)
        self.fc = nn.Linear(256*7*7, out_channels)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)

        x = torch.flatten(x, 1)
        out = self.fc(x)
        return out

训练函数

python 复制代码
def train(model, train_loader, test_loader, criterion, optimizor, epochs, device, writer, save_weight=False):
    train_loss = AverageMeter()
    test_loss = AverageMeter()
    train_precision = AverageMeter()
    test_precision = AverageMeter()

    time_tick = datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S")

    for epoch in range(epochs):
        print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, args.lr))
        model.train()
        for input, label in tqdm(train_loader):
            input, label = input.to(device), label.to(device)
            output = model(input)
            # backward
            loss = criterion(output, label)
            optimizor.zero_grad()
            loss.backward()
            optimizor.step()

            # logger
            predict = torch.argmax(output, dim=1)
            train_pre = sum(predict == label) / len(label)
            train_loss.update(loss.item(), input.size(0))
            train_precision.update(train_pre.item(), input.size(0))

        model.eval()
        with torch.no_grad():
            for X, y in tqdm(test_loader):
                X, y = X.to(device), y.to(device)
                y_hat = model(X)

                loss_te = criterion(y_hat, y)
                predict_ = torch.argmax(y_hat, dim=1)
                test_pre = sum(predict_ == y) / len(y)

                test_loss.update(loss_te.item(), X.size(0))
                test_precision.update(test_pre.item(), X.size(0))

        if save_weight:
            best_dice = args.best_dice
            weight_dir = os.path.join(args.weight_dir, args.model, time_tick)
            os.makedirs(weight_dir, exist_ok=True)

            monitor_dice = test_precision.avg
            if monitor_dice > best_dice:
                best_dice = max(monitor_dice, best_dice)

                name = os.path.join(weight_dir, args.model + '_' + str(epoch) + \
                       '_test_loss-' + str(round(test_loss.avg, 4)) + \
                       '_test_dice-' + str(round(best_dice, 4)) + '.pt')
                torch.save(model.state_dict(), name)

        print("train" + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=train_loss.avg, dice=train_precision.avg))
        print("test " + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=test_loss.avg, dice=test_precision.avg))

        # summary
        writer.scalar_summary("Loss/loss", {"train": train_loss.avg, "test": test_loss.avg}, epoch)
        writer.scalar_summary("Loss/precision", {"train": train_precision.avg, "test": test_precision.avg}, epoch)

        writer.close()

整体代码

python 复制代码
import os
import random
import numpy as np
import datetime
import torch
import torch.nn as nn
from torch.utils.data import DataLoader

import torchvision
from torchvision import transforms

import argparse
from tqdm import tqdm

import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter

"""Reproduction experiment"""
def setup_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    # torch.backends.cudnn.benchmark = False
    # torch.backends.cudnn.enabled = False
    # torch.backends.cudnn.deterministic = True


"""data related"""
def _base_options():
    parser = argparse.ArgumentParser(description="Train setting for FashionMNIST")
    # about dataset
    parser.add_argument('--batch_size', default=8, type=int, help='the batch size of dataset')
    parser.add_argument('--num_works', default=4, type=int, help="the num_works used")
    # train
    parser.add_argument('--epochs', default=100, type=int, help='train iterations')
    parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
    parser.add_argument('--model', default="SimpleNet", choices=["SimpleNet"], help="the model choosed")
    # log dir
    parser.add_argument('--log_dir', default="./logger/", help='the path of log file')
    #
    parser.add_argument('--best_dice', default=-100, type=int, help='for save weight')
    parser.add_argument('--weight_dir', default="./weight/", help='the dir for save weight')

    args = parser.parse_args()
    return args

def _load_data():
    """download the data, and generate the dataloader"""
    trans = transforms.Compose([transforms.ToTensor()])

    train_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=True, download=True, transform=trans)
    test_dataset = torchvision.datasets.FashionMNIST(root='./data/', train=False, download=True, transform=trans)
    # print(len(train_dataset), len(test_dataset))
    train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)
    test_loader = DataLoader(test_dataset, shuffle=True, batch_size=args.batch_size, num_workers=args.num_works)

    return (train_loader, test_loader)

def _device():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    return device

"""display data examples"""
def _image_label(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                  'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def _show_images(imgs, rows, columns, titles=None, scale=1.5):
    figsize = (rows * scale, columns * 1.5)
    fig, axes = plt.subplots(rows, columns, figsize=figsize)
    axes = axes.flatten()
    for i, (img, ax) in enumerate(zip(imgs, axes)):
        ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    plt.show()
    return axes

def _show_examples():
    train_loader, test_loader = _load_data()

    for images, labels in train_loader:
        images = images.squeeze(1)
        _show_images(images, 3, 3, _image_label(labels))
        break

"""log"""
class _logger():
    def __init__(self, log_dir, log_history=True):
        if log_history:
            log_dir = os.path.join(log_dir, datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S"))
        self.summary = SummaryWriter(log_dir)

    def scalar_summary(self, tag, value, step):
        self.summary.add_scalars(tag, value, step)

    def images_summary(self, tag, image_tensor, step):
        self.summary.add_images(tag, image_tensor, step)

    def figure_summary(self, tag, figure, step):
        self.summary.add_figure(tag, figure, step)

    def graph_summary(self, model):
        self.summary.add_graph(model)

    def close(self):
        self.summary.close()

"""evaluate the result"""
class AverageMeter():
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


"""define the Net"""
class Conv3x3(nn.Module):
    def __init__(self, in_channels, out_channels, down_sample=False):
        super(Conv3x3, self).__init__()
        self.conv = nn.Sequential(nn.Conv2d(in_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True),
                                  nn.Conv2d(out_channels, out_channels, 3, 1, 1),
                                  nn.BatchNorm2d(out_channels),
                                  nn.ReLU(inplace=True))
        if down_sample:
            self.conv[3] = nn.Conv2d(out_channels, out_channels, 2, 2, 0)

    def forward(self, x):
        return self.conv(x)

class SimpleNet(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(SimpleNet, self).__init__()
        self.conv1 = Conv3x3(in_channels, 32)
        self.conv2 = Conv3x3(32, 64, down_sample=True)
        self.conv3 = Conv3x3(64, 128)
        self.conv4 = Conv3x3(128, 256, down_sample=True)
        self.fc = nn.Linear(256*7*7, out_channels)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)

        x = torch.flatten(x, 1)
        out = self.fc(x)
        return out

"""progress of train/test"""
def train(model, train_loader, test_loader, criterion, optimizor, epochs, device, writer, save_weight=False):
    train_loss = AverageMeter()
    test_loss = AverageMeter()
    train_precision = AverageMeter()
    test_precision = AverageMeter()

    time_tick = datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S")

    for epoch in range(epochs):
        print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, args.lr))
        model.train()
        for input, label in tqdm(train_loader):
            input, label = input.to(device), label.to(device)
            output = model(input)
            # backward
            loss = criterion(output, label)
            optimizor.zero_grad()
            loss.backward()
            optimizor.step()

            # logger
            predict = torch.argmax(output, dim=1)
            train_pre = sum(predict == label) / len(label)
            train_loss.update(loss.item(), input.size(0))
            train_precision.update(train_pre.item(), input.size(0))

        model.eval()
        with torch.no_grad():
            for X, y in tqdm(test_loader):
                X, y = X.to(device), y.to(device)
                y_hat = model(X)

                loss_te = criterion(y_hat, y)
                predict_ = torch.argmax(y_hat, dim=1)
                test_pre = sum(predict_ == y) / len(y)

                test_loss.update(loss_te.item(), X.size(0))
                test_precision.update(test_pre.item(), X.size(0))

        if save_weight:
            best_dice = args.best_dice
            weight_dir = os.path.join(args.weight_dir, args.model, time_tick)
            os.makedirs(weight_dir, exist_ok=True)

            monitor_dice = test_precision.avg
            if monitor_dice > best_dice:
                best_dice = max(monitor_dice, best_dice)

                name = os.path.join(weight_dir, args.model + '_' + str(epoch) + \
                       '_test_loss-' + str(round(test_loss.avg, 4)) + \
                       '_test_dice-' + str(round(best_dice, 4)) + '.pt')
                torch.save(model.state_dict(), name)

        print("train" + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=train_loss.avg, dice=train_precision.avg))
        print("test " + '---Loss: {loss:.4f} | Dice: {dice:.4f}'.format(loss=test_loss.avg, dice=test_precision.avg))

        # summary
        writer.scalar_summary("Loss/loss", {"train": train_loss.avg, "test": test_loss.avg}, epoch)
        writer.scalar_summary("Loss/precision", {"train": train_precision.avg, "test": test_precision.avg}, epoch)

        writer.close()




if __name__ == "__main__":
    # config
    args = _base_options()
    device = _device()
    # data
    train_loader, test_loader = _load_data()
    # logger
    writer = _logger(log_dir=os.path.join(args.log_dir, args.model))
    # model
    model = SimpleNet(in_channels=1, out_channels=10).to(device)
    optimizor = torch.optim.Adam(model.parameters(), lr=args.lr)
    criterion = nn.CrossEntropyLoss()

    train(model, train_loader, test_loader, criterion, optimizor, args.epochs, device, writer, save_weight=True)


"""    
    args = _base_options()
    _show_examples()  # --------->  样例图片显示
"""

训练过程

日志

相关推荐
深度学习lover9 分钟前
<数据集>yolo纸板缺陷识别数据集<目标检测>
python·深度学习·yolo·目标检测·计算机视觉·数据集
OAFD.9 分钟前
YLOLv4
人工智能·计算机视觉·目标跟踪
java1234_小锋21 分钟前
TensorFlow2 Python深度学习 - 循环神经网络(GRU)示例
python·深度学习·gru·tensorflow2
新加坡内哥谈技术1 小时前
解决了“错误的问题”:对AI编程热潮的深度反思
人工智能
渡我白衣1 小时前
未来的 AI 操作系统(八)——灵知之门:当智能系统开始理解存在
人工智能·深度学习·opencv·机器学习·计算机视觉·语言模型·人机交互
夕小瑶1 小时前
Dexmal 原力灵机开源 Dexbotic:具身智能的“Transformers“库来了
大数据·人工智能
飞飞是甜咖啡2 小时前
SPP-CNN解决CNN只能处理固定大小的输入图片
人工智能·神经网络·cnn
xiaoxiaode_shu2 小时前
神经网络基础
人工智能·深度学习·神经网络
小小爱大王2 小时前
AI 编码效率提升 10 倍的秘密:Prompt 工程 + 工具链集成实战
java·javascript·人工智能
盼小辉丶2 小时前
使用CNN构建VAE
深度学习·神经网络·cnn·生成模型