如何在 PyTorch 中冻结模型权重以进行迁移学习:分步教程

一、说明

迁移学习是一种机器学习技术,其中预先训练的模型适用于新的但类似的问题。迁移学习的关键步骤之一是能够冻结预训练模型的层,以便在训练期间仅更新网络的某些部分。当您想要保留预训练模型已经学习的特征时,冻结至关重要。在本教程中,我们将使用一个简单的示例来演示在 PyTorch 中冻结权重以进行迁移学习的过程。

二、先决条件

如果您没有安装 torch 和 torchvision 库,我们可以在终端中执行以下操作:

aba 复制代码
pip install torch torchvision 

三、导入库

让我们从 Python 代码开始。首先,我们导入本教程的库:

aba 复制代码
import torch
import torch.nn as nn
import torchvision.models as models

四、加载预训练模型

我们将在此示例中使用预训练的 ResNet-18 模型:

aba 复制代码
# Load the pre-trained model
resnet18 = models.resnet18(pretrained=True)

五、冻结层

要冻结图层,我们将requires_grad属性设置为False。这可以防止 PyTorch 在反向传播期间计算这些层的梯度。

aba 复制代码
# Freeze all layers
for param in resnet18.parameters():
    param.requires_grad = False

六、解冻一些层

通常,为了获得最佳结果,我们会对网络中的后续层进行一些微调。我们可以这样做:

aba 复制代码
# Unfreeze last layer
for param in resnet18.fc.parameters():
    param.requires_grad = True

七、修改网络架构

我们将替换最后一个全连接层,以使模型适应具有不同数量的输出类(假设有 10 个类)的新问题。此外,这使我们能够将这个预训练网络用于分类以外的其他应用,例如分割。对于分割,我们用卷积层替换最后一层。对于此示例,我们继续执行包含 10 个类别的分类任务。

aba 复制代码
# Replace last layer
num_ftrs = resnet18.fc.in_features
resnet18.fc = nn.Linear(num_ftrs, 10)

八、训练修改后的模型

让我们定义一个简单的训练循环。出于演示目的,我们将使用随机数据。

aba 复制代码
# Create random data
inputs = torch.randn(5, 3, 224, 224)
labels = torch.randint(0, 10, (5,))

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(resnet18.fc.parameters(), lr=0.001, momentum=0.9)

# Training loop
for epoch in range(5):
    optimizer.zero_grad()
    outputs = resnet18(inputs)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()
    print(f'Epoch {epoch+1}/5, Loss: {loss.item()}')  

在此示例中,训练期间仅更新最后一层的权重。

九、结论

在 PyTorch 中冻结层非常简单明了。通过将该requires_grad属性设置为False,您可以防止在训练期间更新特定层,从而使您能够有效地利用预训练模型的强大功能。

了解如何在 PyTorch 中冻结和解冻层对于有效的迁移学习至关重要,因为它允许您利用预训练的模型来执行类似但不同的任务。通过这种简单而强大的技术,您可以在训练深度神经网络时节省时间和计算资源。

参考资料:请访问此处、GithubLinkedIn礼萨·卡兰塔尔

相关推荐
冻感糕人~1 分钟前
Agent框架协议“三部曲”:MCP、A2A与AG-UI的协同演进
java·人工智能·学习·语言模型·大模型·agent·大模型学习
说私域4 分钟前
AI智能名片链动2+1模式S2B2C商城小程序在客服沟通中的应用与效果
人工智能·小程序
S***t7146 分钟前
深度学习迁移学习应用
人工智能·深度学习·迁移学习
程序员哈基耄7 分钟前
当AI遇见塔罗:现代生活中的自我探索新方式
人工智能·生活
lucky_syq13 分钟前
再谈向量数据库:AI时代的存储新引擎
大数据·数据库·人工智能
IT_陈寒36 分钟前
Vue 3.4 性能优化实战:7个被低估的Composition API技巧让你的应用提速30%
前端·人工智能·后端
while(努力):进步1 小时前
人工智能与边缘计算结合在智能电网负荷预测与优化调度中的应用探索
人工智能·边缘计算
2501_941142131 小时前
边缘计算与5G结合在智慧交通信号优化与实时路况预测中的创新应用
人工智能·5g·边缘计算
Alang1 小时前
【LM-PDF】一个大模型时代的 PDF 极速预览方案是如何实现的?
前端·人工智能·后端
kupeThinkPoem2 小时前
代码生成工具Amazon CodeWhisperer介绍
人工智能