【RKNN】YOLO V5中pytorch2onnx,pytorch和onnx模型输出不一致,精度降低

yolo v5训练的模型,转onnx,再转rknn后,测试发现:

  1. rknn模型,量化与非量化,相较于pytorch模型,测试精度都有降低
  2. onnx模型,相较于pytorch模型,测试精度也有降低,且与rknn模型的精度更接近

于是,根据这种测试情况,rknn模型的上游,就是onnx。onnx这里发现不对劲,肯定是这步就出现了问题。于是就查pytorch转onnx阶段,就存在转化的精度降低了。

本篇就是记录这样一个过程,也请各位针对本文的问题,给一些建议,毕竟目前是发现了问题,同时还存在一些问题在。

一、pytorch转onnx:torch.onnx.export

yolo v5 export.py: def export_onnx()中,添加下面代码,检查转储的onnx模型,与pytorch模型的输出结果是否一致。代码如下:

python 复制代码
torch.onnx.export(
    model.cpu() if dynamic else model,  # --dynamic only compatible with cpu
    im.cpu() if dynamic else im,
    f,
    verbose=False,
    opset_version=opset,
    export_params=True, # 将训练好的权重保存到模型文件中
    do_constant_folding=True,  # 执行常数折叠进行优化
    input_names=['images'],
    output_names=output_names,
    dynamic_axes={
        "image": {0: "batch_size"},  # variable length axes
        "output": {0: "batch_size"},
    }
)

# Checks
model_onnx = onnx.load(f)  # load onnx model
onnx.checker.check_model(model_onnx)  # check onnx model
    
import onnxruntime
import numpy as np
print('onnxruntime run start', f)
sess = onnxruntime.InferenceSession('best.onnx')
print('sess run start')
output = sess.run(['output0'], {'images': im.detach().numpy()})[0]
print('pytorch model inference start')


pytorch_result = model(im)[0].detach().numpy()
print(' allclose start')
print('output:', output)
print('pytorch_result:', pytorch_result)
assert np.allclose(output, pytorch_result), 'the output is different between pytorch and onnx !!!'

对其中的输出结果进行了打印,将差异性比较明显的地方进行了标记,如下所示:

也可以直接使用我下面这个版本,在转完onnx后,进行评测,转好的onnx和pt文件之间的差异性。如下:

参考pytorch官方:(OPTIONAL) EXPORTING A MODEL FROM PYTORCH TO ONNX AND RUNNING IT USING ONNX RUNTIME

python 复制代码
import os
import platform
import sys
import warnings
from pathlib import Path
import torch

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
if platform.system() != 'Windows':
    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.experimental import attempt_load
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
from utils.dataloaders import LoadImages
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
                           check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
from utils.torch_utils import select_device, smart_inference_mode


import numpy as np
def cosine_distance(arr1, arr2):
    # flatten the arrays to shape (16128, 7)
    arr1_flat = arr1.reshape(-1, 7)
    arr2_flat = arr2.reshape(-1, 7)

    # calculate the cosine distance
    cosine_distance = np.dot(arr1_flat.T, arr2_flat) / (np.linalg.norm(arr1_flat) * np.linalg.norm(arr2_flat))

    return cosine_distance.mean()


def check_onnx(model, im):

    import onnxruntime
    import numpy as np
    print('onnxruntime run start')
    sess = onnxruntime.InferenceSession('best.onnx')
    print('sess run start')
    output = sess.run(['output0'], {'images': im.detach().numpy()})[0]
    print('pytorch model inference start')

    with torch.no_grad():
        pytorch_result = model(im)[0].detach().numpy()
    print(' allclose start')
    print('output:', output, output.shape)
    print('pytorch_result:', pytorch_result, pytorch_result.shape)
    cosine_dis = cosine_distance(output, pytorch_result)
    print('cosine_dis:', cosine_dis)

    # 判断小数点后几位(4),是否相等,不相等就报错
    # np.testing.assert_almost_equal(pytorch_result, output, decimal=4)

    # compare ONNX Runtime and PyTorch results
    np.testing.assert_allclose(pytorch_result, output, rtol=1e-03, atol=1e-05)

    # assert np.allclose(output, pytorch_result), 'the output is different between pytorch and onnx !!!'

import cv2
from utils.augmentations import letterbox
def preprocess(img, device):
    img = cv2.resize(img, (512, 512))

    img = img.transpose((2, 0, 1))[::-1]
    img = np.ascontiguousarray(img)
    img = torch.from_numpy(img).to(device)
    img = img.float()
    img /= 255
    if len(img.shape) == 3:
        img = img[None]
    return img
def main(
        weights=ROOT / 'weights/best.pt',  # weights path
        imgsz=(512, 512),  # image (height, width)
        batch_size=1,  # batch size
        device='cpu',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        inplace=False,  # set YOLOv5 Detect() inplace=True
        dynamic=False,  # ONNX/TF/TensorRT: dynamic axes

):
    # Load PyTorch model
    device = select_device(device)
    model = attempt_load(weights, device=device, inplace=True, fuse=True)  # load FP32 model

    # Checks
    imgsz *= 2 if len(imgsz) == 1 else 1  # expand

    # Input
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz = [check_img_size(x, gs) for x in imgsz]  # verify img_size are gs-multiples
    im = torch.zeros(batch_size, 3, *imgsz).to(device)  # image size(1,3,320,192) BCHW iDetection
    # im = cv2.imread(r'F:\tmp\yolov5_multiDR\data\0000005_20200929_M_063Y16640.jpeg')
    # im = preprocess(im, device)

    print(im.shape)
    # Update model
    model.eval()
    for k, m in model.named_modules():
        if isinstance(m, Detect):
            m.inplace = inplace
            m.dynamic = dynamic
            m.export = True

    warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning)  # suppress TracerWarning
    check_onnx(model, im)

if __name__ == "__main__":
    main()

测试1:图像是一个全0的数组,一致性检查如下:

Mismatched elements: 76 / 112896 (0.0673%)
Max absolute difference:  0.00053406
Max relative difference:      2.2101

output: [[[     3.1054       3.965      8.9553 ...  6.8545e-07     0.36458     0.53113]
  [     9.0205      2.5498       13.39 ...  6.2585e-07     0.18449     0.70698]
  [     20.786      2.2233      13.489 ...  2.3842e-06    0.033101     0.95657]
  ...
  [     419.42      493.04      106.14 ...  8.4937e-06     0.24135     0.60916]
  [     485.68      500.22      46.923 ...  1.1176e-05     0.33573     0.48875]
  [     488.37      503.87      68.881 ...  5.9605e-08  0.00030029     0.99639]]] (1, 16128, 7)
pytorch_result: [[[     3.1054       3.965      8.9553 ...  7.0523e-07     0.36458     0.53113]
  [     9.0205      2.5498       13.39 ...  6.0181e-07     0.18449     0.70698]
  [     20.786      2.2233      13.489 ...  2.4172e-06    0.033101     0.95657]
  ...
  [     419.42      493.04      106.14 ...  8.5151e-06     0.24135     0.60916]
  [     485.68      500.22      46.923 ...  1.1174e-05     0.33573     0.48875]
  [     488.37      503.87      68.881 ...  9.3094e-08   0.0003003     0.99639]]] (1, 16128, 7)
cosine_dis: 0.04229331

测试2:图像是加载的本地图像,一致性检查如下:

Mismatched elements: 158 / 112896 (0.14%)
Max absolute difference:   0.0016251
Max relative difference:      1.2584

output: [[[     3.0569      2.4338      10.758 ...  2.0862e-07     0.16333     0.78551]
  [     11.028      2.0251      13.407 ...  3.5763e-07    0.090503     0.88087]
  [     19.447      1.8957      13.431 ...  6.8545e-07    0.047358     0.95029]
  ...
  [     418.66       487.8      80.157 ...  1.4573e-05     0.65453     0.23448]
  [     472.99      491.78      79.313 ...  1.3232e-05     0.79356     0.15061]
  [     496.41      488.49      44.447 ...  2.6256e-05     0.89966     0.08772]]] (1, 16128, 7)
pytorch_result: [[[     3.0569      2.4338      10.758 ...  2.5371e-07     0.16333     0.78551]
  [     11.028      2.0251      13.407 ...  3.3069e-07    0.090503     0.88087]
  [     19.447      1.8957      13.431 ...  6.6051e-07    0.047358     0.95029]
  ...
  [     418.66       487.8      80.157 ...  1.4618e-05     0.65453     0.23448]
  [     472.99      491.78      79.313 ...  1.3215e-05     0.79356     0.15061]
  [     496.41      488.49      44.447 ...  2.6262e-05     0.89966     0.08772]]] (1, 16128, 7)
cosine_dis: 0.04071107

发现,输出结果中,差异的数据点还是挺多的,那么就说明在模型中,有些部分的参数是有差异的,这才导致相同的输入,在最后的输出结果中存在差异。

但是在一定的误差内,结果是一致的。比如我验证了小数点后3位,都是一样的,但是到第4位的时候,就开始出现了差异性。

那么,如何降低,甚至没有这种差异,该怎么办呢?不知道你们有没有这方面的知识储备或经验,欢迎评论区给出指导,感谢。

二、新的pytorch转onnx:torch.onnx.dynamo_export

在参考pytorch官方,关于torch.onnx.export的模型转换,相关文档中:(OPTIONAL) EXPORTING A MODEL FROM PYTORCH TO ONNX AND RUNNING IT USING ONNX RUNTIME

上述案例,是pytorch官方给出评测pytorch和onnx转出模型,在相同输入的情况下,输出结果一致性对比的评测代码。对比这里:

python 复制代码
testing.assert_allclose(actual, desired, rtol=1e-07, atol=0, equal_nan=True, err_msg='', verbose=True)

其中:

  • rtol:相对tolerance(容忍度,公差,容许偏差)
  • atol:绝对tolerance
  • 要求 actualdesired 值的差别不超过 atol + rtol * abs(desired),否则弹出错误提示

可以看出,这是在误差允许的范围内,进行的评测。只要满足一定的误差要求,还是满足的。并且在本测试案例中,也确实通过了上述设定值的误差要求。

但是,峰回路转,有个提示,如下:

于是,就转到torch.onnx.dynamo_export链接,点击这里直达:EXPORT A PYTORCH MODEL TO ONNX

同样的流程,导出模型,然后进行一致性评价,发现官方竟然没有采用允许误差的评测,而是下面这样:
输出完全一致,这是一个大好消息。至此,开始验证

2.1、验证结果

与此同时,发现yolo v5更新到了v7.0.0的版本,于是就想着把yolo 进行升级,同时将pytorch版本也更新到最新的2.1.0,这样就可以采用torch.onnx.dynamo_export 进行转onnx模型的操作尝试了。

当一起就绪后,采用下面的代码转出onnx模型的时候,却出现了错误提示。

python 复制代码
export_output = torch.onnx.dynamo_export(model.cpu() if dynamic else model,
                                             im.cpu() if dynamic else im)
export_output.save("my_image_classifier.onnx")

2.2、转出失败

给出失败的的提示:torch.onnx.OnnxExporterError,转出onnx模型失败,产生了一个SARIF的文件。然后介绍了什么是SARIF文件,可以通过VS Code SARIF,也可以 SARIF web查看。最后说吧这个错误,报告给pytorchGitHubissue地方。

产生了一个名为:report_dynamo_export.sarif是文件,打开文件,记录的信息如下:

{
 "runs":[
  {
   "tool":{
    "driver":{
     "name":"torch.onnx.dynamo_export",
     "contents":[
      "localizedData",
      "nonLocalizedData"
     ],
     "language":"en-US",
     "rules":[],
     "version":"2.1.0+cu118"
    }
   },
   "language":"en-US",
   "newlineSequences":[
    "\r\n",
    "\n"
   ],
   "results":[]
  }
 ],
 "version":"2.1.0",
 "schemaUri":"https://docs.oasis-open.org/sarif/sarif/v2.1.0/cs01/schemas/sarif-schema-2.1.0.json"
}

这更像是一个运行环境收集的一个记录文件。在我对全网进行搜索时候,发现了类似的报错提示,但并没有解决办法。不知道是不是因为这个函数还在内测阶段,并没有很好的适配。

如果你也遇到了同样的问题,欢迎给评论,指导问题出在了哪里?如何解决这个问题。感谢

三、总结

原本想着验证最终转rknn的模型,与原始pytorch模型是否一致的问题,最后发现在转onnx阶段,这种差异性就已经存在了。并且发现rknn的测试结果,与onnx模型的测试结果更加的贴近。无论是量化后的rknn,还是未量化的,均存在这个问题。

同时发现,量化后的rknn模型,在config阶段改变量化的方式,确实会提升模型的性能,且几乎接近于未量化的模型版本。

原本以为采用pytorch新的转出onnx的模型函数,可以解决这个问题。但是,发现还是内测版本,不知道问题是出在了哪里,还需要大神帮助,暂时未跑通。

最后,如果你也遇到了同样的问题,欢迎给评论,指导问题出在了哪里?如何解决这个问题。感谢

相关推荐
好评笔记3 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云3 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
AI街潜水的八角4 小时前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
叫我:松哥5 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
熊文豪5 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
Vol火山6 小时前
AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
人工智能·制造
tuan_zhang6 小时前
第17章 安全培训筑牢梦想根基
人工智能·安全·工业软件·太空探索·战略欺骗·算法攻坚
Antonio9157 小时前
【opencv】第10章 角点检测
人工智能·opencv·计算机视觉
互联网资讯7 小时前
详解共享WiFi小程序怎么弄!
大数据·运维·网络·人工智能·小程序·生活
helianying557 小时前
AI赋能零售:ScriptEcho如何提升效率,优化用户体验
前端·人工智能·ux·零售