Spark 的主要组件及任务分工

Spark 是一个开源的分布式计算框架,旨在处理大规模数据集的快速计算和分析。下面是 Spark 的主要组件及其任务分工的详细介绍:

  1. Driver(驱动器):【任务调度】

    • 负责整个 Spark 应用程序的执行和协调。
    • 解析用户程序,并将其转换为执行计划。
    • 管理任务的调度和执行。
    • 与集群管理器进行通信,以获取资源和监控应用程序的执行状态。
  2. Cluster Manager(集群管理器):【资源管理】

    • 负责管理整个 Spark 集群的资源分配和调度。
    • 分配计算资源给 Spark 应用程序的 Driver 和 Executor。
    • 监控集群中的节点和资源使用情况。
    • 常见的集群管理器包括 Apache Mesos、Hadoop YARN 和 Spark Standalone。
  3. Executor(执行器):【计算/执行任务】

    • 运行在集群的工作节点上,负责执行任务和计算。
    • 由集群管理器分配资源给 Executor,并在 Executor 上启动任务。
    • 将数据加载到内存中,并执行用户定义的操作。
    • 将计算结果返回给 Driver。
  4. Spark Core(核心模块):

    • 提供了 Spark 的基本功能和基础设施,包括任务调度、内存管理、错误恢复等。
    • 定义了 RDD(Resilient Distributed Dataset)的概念,作为 Spark 的基本数据抽象。
    • 提供了与集群管理器的接口,以便与不同的集群管理器进行集成。
  5. Spark SQL:

    • 提供了用于处理结构化数据的 SQL 查询接口和数据处理功能。
    • 支持读写各种数据源,如关系型数据库、Parquet、Avro 等。
    • 可以将 SQL 查询与 Spark 的分布式计算能力结合起来,并进行优化。
  6. Spark Streaming:

    • 支持实时数据流的处理和分析。
    • 将实时数据流分割为小批量数据,并将其作为连续的 RDD 进行处理。
    • 可以与 Spark Core 和 Spark SQL 进行无缝集成,实现实时和批处理的混合计算。
  7. MLlib(机器学习库):

    • 提供了一组机器学习算法和工具,用于数据挖掘和模型训练。
    • 支持常见的机器学习任务,如分类、回归、聚类等。
    • 可以与 Spark 的分布式计算能力相结合,处理大规模数据集。
  8. GraphX(图计算库):

    • 提供了用于图计算和图分析的 API 和算法。
    • 可以进行图的构建、遍历和计算等操作。
    • 支持大规模图数据的处理和分析。
相关推荐
一键三联啊28 分钟前
【GIT】错误集锦及解决方案
大数据·elasticsearch·搜索引擎
武子康1 小时前
大数据-124 - Flink State:Keyed State、Operator State KeyGroups 工作原理 案例解析
大数据·后端·flink
老友@1 小时前
集中式架构、分布式架构与微服务架构全面解析
分布式·微服务·架构·系统架构
vxtkjzxt8882 小时前
手机群控软件在游戏运营中的行为模拟技术实践
大数据
前端世界2 小时前
从0到1实现鸿蒙智能设备状态监控:轻量级架构、分布式同步与MQTT实战全解析
分布式·架构·harmonyos
铭毅天下2 小时前
Codebuddy 实现:云端 Elasticsearch 到 本地 Easysearch 跨集群迁移 Python 小工具
大数据·elasticsearch·搜索引擎·全文检索
青云交2 小时前
Java 大视界 -- Java 大数据在智慧交通自动驾驶仿真与测试数据处理中的应用
java·大数据·自动驾驶·数据存储·算法优化·智慧交通·测试数据处理
观远数据3 小时前
A Blueberry 签约观远数据,观远BI以一站式现代化驱动服饰企业新增长
大数据·数据库·人工智能·数据分析
缘华工业智维9 小时前
工业设备预测性维护:能源成本降低的“隐藏钥匙”?
大数据·网络·人工智能
NewsMash9 小时前
马来西亚代表团到访愿景娱乐 共探TikTok直播电商增长新路径
大数据·娱乐