Spark 的主要组件及任务分工

Spark 是一个开源的分布式计算框架,旨在处理大规模数据集的快速计算和分析。下面是 Spark 的主要组件及其任务分工的详细介绍:

  1. Driver(驱动器):【任务调度】

    • 负责整个 Spark 应用程序的执行和协调。
    • 解析用户程序,并将其转换为执行计划。
    • 管理任务的调度和执行。
    • 与集群管理器进行通信,以获取资源和监控应用程序的执行状态。
  2. Cluster Manager(集群管理器):【资源管理】

    • 负责管理整个 Spark 集群的资源分配和调度。
    • 分配计算资源给 Spark 应用程序的 Driver 和 Executor。
    • 监控集群中的节点和资源使用情况。
    • 常见的集群管理器包括 Apache Mesos、Hadoop YARN 和 Spark Standalone。
  3. Executor(执行器):【计算/执行任务】

    • 运行在集群的工作节点上,负责执行任务和计算。
    • 由集群管理器分配资源给 Executor,并在 Executor 上启动任务。
    • 将数据加载到内存中,并执行用户定义的操作。
    • 将计算结果返回给 Driver。
  4. Spark Core(核心模块):

    • 提供了 Spark 的基本功能和基础设施,包括任务调度、内存管理、错误恢复等。
    • 定义了 RDD(Resilient Distributed Dataset)的概念,作为 Spark 的基本数据抽象。
    • 提供了与集群管理器的接口,以便与不同的集群管理器进行集成。
  5. Spark SQL:

    • 提供了用于处理结构化数据的 SQL 查询接口和数据处理功能。
    • 支持读写各种数据源,如关系型数据库、Parquet、Avro 等。
    • 可以将 SQL 查询与 Spark 的分布式计算能力结合起来,并进行优化。
  6. Spark Streaming:

    • 支持实时数据流的处理和分析。
    • 将实时数据流分割为小批量数据,并将其作为连续的 RDD 进行处理。
    • 可以与 Spark Core 和 Spark SQL 进行无缝集成,实现实时和批处理的混合计算。
  7. MLlib(机器学习库):

    • 提供了一组机器学习算法和工具,用于数据挖掘和模型训练。
    • 支持常见的机器学习任务,如分类、回归、聚类等。
    • 可以与 Spark 的分布式计算能力相结合,处理大规模数据集。
  8. GraphX(图计算库):

    • 提供了用于图计算和图分析的 API 和算法。
    • 可以进行图的构建、遍历和计算等操作。
    • 支持大规模图数据的处理和分析。
相关推荐
菜鸟康39 分钟前
C++实现分布式网络通信框架RPC(2)——rpc发布端
分布式·网络协议·rpc
T06205141 小时前
【实证分析】上市公司企业风险承担水平数据集(2000-2022年)
大数据·人工智能
G皮T1 小时前
【Elasticsearch】映射:Join 类型、Flattened 类型、多表关联设计
大数据·elasticsearch·搜索引擎·nested·join·多表关联·flattened
G皮T1 小时前
【Elasticsearch】映射:Nested 类型
大数据·elasticsearch·搜索引擎·映射·nested·嵌套类型·mappings
狂奔solar1 小时前
逻辑回归暴力训练预测金融欺诈
大数据·金融·逻辑回归
斯普信专业组2 小时前
Kafka主题运维全指南:从基础配置到故障处理
运维·分布式·kafka
linmoo19862 小时前
Flink 系列之二十二 - 高级概念 - 保存点
大数据·flink·savepoint·保存点
百度Geek说3 小时前
BaikalDB 架构演进实录:打造融合向量化与 MPP 的 HTAP 查询引擎
数据库·分布式·架构
试剂界的爱马仕4 小时前
TCA 循环中间体如何改写肝损伤命运【AbMole】
大数据·人工智能·科技·机器学习·ai写作