Spark 的主要组件及任务分工

Spark 是一个开源的分布式计算框架,旨在处理大规模数据集的快速计算和分析。下面是 Spark 的主要组件及其任务分工的详细介绍:

  1. Driver(驱动器):【任务调度】

    • 负责整个 Spark 应用程序的执行和协调。
    • 解析用户程序,并将其转换为执行计划。
    • 管理任务的调度和执行。
    • 与集群管理器进行通信,以获取资源和监控应用程序的执行状态。
  2. Cluster Manager(集群管理器):【资源管理】

    • 负责管理整个 Spark 集群的资源分配和调度。
    • 分配计算资源给 Spark 应用程序的 Driver 和 Executor。
    • 监控集群中的节点和资源使用情况。
    • 常见的集群管理器包括 Apache Mesos、Hadoop YARN 和 Spark Standalone。
  3. Executor(执行器):【计算/执行任务】

    • 运行在集群的工作节点上,负责执行任务和计算。
    • 由集群管理器分配资源给 Executor,并在 Executor 上启动任务。
    • 将数据加载到内存中,并执行用户定义的操作。
    • 将计算结果返回给 Driver。
  4. Spark Core(核心模块):

    • 提供了 Spark 的基本功能和基础设施,包括任务调度、内存管理、错误恢复等。
    • 定义了 RDD(Resilient Distributed Dataset)的概念,作为 Spark 的基本数据抽象。
    • 提供了与集群管理器的接口,以便与不同的集群管理器进行集成。
  5. Spark SQL:

    • 提供了用于处理结构化数据的 SQL 查询接口和数据处理功能。
    • 支持读写各种数据源,如关系型数据库、Parquet、Avro 等。
    • 可以将 SQL 查询与 Spark 的分布式计算能力结合起来,并进行优化。
  6. Spark Streaming:

    • 支持实时数据流的处理和分析。
    • 将实时数据流分割为小批量数据,并将其作为连续的 RDD 进行处理。
    • 可以与 Spark Core 和 Spark SQL 进行无缝集成,实现实时和批处理的混合计算。
  7. MLlib(机器学习库):

    • 提供了一组机器学习算法和工具,用于数据挖掘和模型训练。
    • 支持常见的机器学习任务,如分类、回归、聚类等。
    • 可以与 Spark 的分布式计算能力相结合,处理大规模数据集。
  8. GraphX(图计算库):

    • 提供了用于图计算和图分析的 API 和算法。
    • 可以进行图的构建、遍历和计算等操作。
    • 支持大规模图数据的处理和分析。
相关推荐
Acrel_WPP1 小时前
分布式光伏智慧平台建设现场 系统集成商如何盈利
分布式
大山同学1 小时前
DPGO:异步和并行分布式位姿图优化 2020 RA-L best paper
人工智能·分布式·语言模型·去中心化·slam·感知定位
PersistJiao1 小时前
Spark RDD中常用聚合算子源码层面的对比分析
spark·源码分析·rdd·聚合算子
小_太_阳2 小时前
hadoop_yarn详解
大数据·hadoop·yarn
Lyqfor2 小时前
云原生学习
java·分布式·学习·阿里云·云原生
Data-Miner2 小时前
大数据湖项目建设方案(100页WORD)
大数据·big data
流雨声2 小时前
2024-09-01 - 分布式集群网关 - LoadBalancer - 阿里篇 - 流雨声
分布式
floret*3 小时前
用pyspark把kafka主题数据经过etl导入另一个主题中的有关报错
分布式·kafka·etl
AI服务老曹3 小时前
不仅能够实现前后场的简单互动,而且能够实现人机结合,最终实现整个巡检流程的标准化的智慧园区开源了
大数据·人工智能·深度学习·物联网·开源
william8233 小时前
Information Server 中共享开源服务中 kafka 的__consumer_offsets目录过大清理
分布式·kafka·开源