分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

目录

预测效果





基本介绍

1.MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测;

2.运行环境为Matlab2018b;

3.输入多个特征,分四类预测;

4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹;

5.可视化展示分类准确率。

模型描述

RF-Adaboost随机森林结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将t随机森林(RF)和AdaBoost算法相结合,通过多输入模型进行预测。

具体流程如下:

数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。

特征提取:利用RF模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。

AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。

模型评估:对预测结果进行评估。

模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。

预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。

该方法的优点在于,RF模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

程序设计

  • 完整源码和数据获取方式:私信回复RF-Adaboost随机森林结合AdaBoost多输入分类预测
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
subject625Ruben2 天前
随机森林(Random Forest, RF)筛选回归数据(处理异常值)
算法·随机森林·数学建模·回归
十七算法实验室3 天前
Matlab实现北方苍鹰优化算法优化随机森林算法模型 (NGO-RF)(附源码)
开发语言·深度学习·算法·决策树·随机森林·机器学习·matlab
itwangyang5203 天前
2025 - 生信信息学 - GEO数据分析 - RF分析(随机森林)
人工智能·深度学习·随机森林·机器学习·数据分析
baijin_cha5 天前
机器学习基础05_随机森林&线性回归
随机森林·机器学习·线性回归
学不会lostfound6 天前
一、机器学习算法与实践_07支持向量机与集成学习算法笔记
随机森林·机器学习·支持向量机·集成学习·xgboost·lightgbm
谢眠7 天前
机器学习day5-随机森林和线性代数1
线性代数·随机森林·机器学习
十七算法实验室8 天前
Matlab实现麻雀优化算法优化随机森林算法模型 (SSA-RF)(附源码)
算法·决策树·随机森林·机器学习·支持向量机·matlab·启发式算法
小馒头学python9 天前
机器学习中的分类:决策树、随机森林及其应用
人工智能·python·决策树·随机森林·机器学习·分类
秀儿还能再秀10 天前
机器学习:随机森林——基于决策树的模型
笔记·决策树·随机森林·机器学习
_清豆°12 天前
机器学习(七)——集成学习(个体与集成、Boosting、Bagging、随机森林RF、结合策略、多样性增强、多样性度量、Python源码)
人工智能·随机森林·机器学习·adaboost·集成学习·boosting·bagging