分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

目录

预测效果





基本介绍

1.MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测;

2.运行环境为Matlab2018b;

3.输入多个特征,分四类预测;

4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹;

5.可视化展示分类准确率。

模型描述

RF-Adaboost随机森林结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将t随机森林(RF)和AdaBoost算法相结合,通过多输入模型进行预测。

具体流程如下:

数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。

特征提取:利用RF模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。

AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。

模型评估:对预测结果进行评估。

模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。

预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。

该方法的优点在于,RF模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

程序设计

  • 完整源码和数据获取方式:私信回复RF-Adaboost随机森林结合AdaBoost多输入分类预测
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
烟锁池塘柳01 天前
【数学建模】随机森林算法详解:原理、优缺点及应用
算法·随机森林·数学建模
AI大模型团团7 天前
从基础概念到前沿应用了解机器学习
人工智能·python·随机森林·机器学习·ai·线性回归·llama
小森77678 天前
(五)机器学习---决策树和随机森林
算法·决策树·随机森林·机器学习·分类算法
码媛10 天前
A002-随机森林模型实现糖尿病预测
算法·随机森林·机器学习
拓端研究室TRL13 天前
Python对Airbnb北京与上海链家租房数据用逻辑回归、决策树、岭回归、Lasso、随机森林、XGBoost、神经网络、聚类
python·决策树·随机森林·回归·逻辑回归
zhglhy14 天前
随机森林与决策树
算法·决策树·随机森林
啥都鼓捣的小yao16 天前
Python手写“随机森林”解决鸢尾花数据集分类问题
人工智能·python·算法·随机森林·机器学习·分类
十七算法实验室17 天前
Matlab实现鼠群优化算法优化随机森林算法模型 (ROS-RF)(附源码)
开发语言·算法·决策树·随机森林·机器学习·支持向量机·matlab
Suc_zhan24 天前
实验二 如何将随机森林算法应用于激酶抑制剂分类任务
python·算法·随机森林·机器学习
数科星球1 个月前
进军场景智能体,云迹机器人又快了一步
随机森林·逻辑回归·散列表·启发式算法·模拟退火算法