基于JAYA优化的BP神经网络(分类应用) - 附代码

基于JAYA优化的BP神经网络(分类应用) - 附代码

文章目录

摘要:本文主要介绍如何用JAYA算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1 特征2 特征3 类别
单组iris数据 5.3 2.1 1.2 1

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组) 测试集(组) 总数据(组)
105 45 150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.JAYA优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:


图1.神经网络结构

神经网络参数如下:

matlab 复制代码
%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 JAYA算法应用

JAYA算法原理请参考:https://blog.csdn.net/u011835903/article/details/115572600

JAYA算法的参数设置为:

matlab 复制代码
popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)

其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从JAYA算法的收敛曲线可以看到,整体误差是不断下降的,说明JAYA算法起到了优化的作用:

5.Matlab代码

相关推荐
大佐不会说日语~几秒前
基于Spring AI Alibaba的AI聊天系统中,流式输出暂停时出现重复插入问题的分析与解决
java·人工智能·spring
Kyln.Wu2 分钟前
【python实用小脚本-315】跨界应用 | 烹饪爱好者如何用Python改造传统选菜流程?自然语言处理×美食推荐的化学反应,轻松实现AI菜谱生成
人工智能·python·自然语言处理
LDG_AGI3 分钟前
【推荐系统】深度学习训练框架(十五):特征工程——PySpark DataFrame数据处理核心指南
人工智能·深度学习
TOWE technology3 分钟前
PDU、工业连接器与数据中心机柜电力系统
大数据·人工智能·数据中心·idc·pdu·智能pdu·定制电源管理
小魔女千千鱼7 分钟前
openEuler 常用开发工具性能实测:Python、Node.js、Git 运行效率对比
人工智能
用户377833043497 分钟前
( 教学 )Agent 构建 Prompt(提示词)4. JsonOutputParser
人工智能·后端
YuSun_WK9 分钟前
检索增强VS知识蒸馏VS伪标签扩展
人工智能·python
五度易链-区域产业数字化管理平台10 分钟前
行业研究+大数据+AI:“五度易链”如何构建高质量产业数据库?
大数据·人工智能
通义灵码12 分钟前
如何调教一名合格的“编程搭子”
人工智能·智能体·qoder
aitoolhub13 分钟前
AI 生图技术解析:从训练到输出的全流程机制
大数据·人工智能·深度学习