基于秃鹰优化的BP神经网络(分类应用) - 附代码

基于秃鹰优化的BP神经网络(分类应用) - 附代码

文章目录

摘要:本文主要介绍如何用秃鹰算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1 特征2 特征3 类别
单组iris数据 5.3 2.1 1.2 1

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组) 测试集(组) 总数据(组)
105 45 150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.秃鹰优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:


图1.神经网络结构

神经网络参数如下:

matlab 复制代码
%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 秃鹰算法应用

秃鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/113775430

秃鹰算法的参数设置为:

matlab 复制代码
popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)

其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从秃鹰算法的收敛曲线可以看到,整体误差是不断下降的,说明秃鹰算法起到了优化的作用:



5.Matlab代码

相关推荐
高力士等十万人2 分钟前
OpenCV对比度增强
人工智能·python·opencv
2501_907136825 分钟前
Office和WPS中使用deepseek,解决出错问题,生成速度极快,一站式AI处理文档
人工智能·wps
黑尾土拨鼠5 分钟前
WPS接入私有化DeepSeek大语言模型
人工智能·语言模型·wps
不一样的信息安全40 分钟前
深入解析DeepSeek智慧城市应用中的交通流量预测API接口
人工智能
给生活加糖!1 小时前
智能交通系统(Intelligent Transportation Systems):智慧城市中的交通革新
网络·人工智能·智慧城市
可为测控1 小时前
图像处理基础(3):均值滤波器及其变种
图像处理·人工智能·均值算法
刘立军1 小时前
本地大模型编程实战(20)用langgraph和智能体实现RAG(Retrieval Augmented Generation,检索增强生成)(4)
人工智能·后端·llm
Abdullah al-Sa1 小时前
Docker教程(喂饭级!)
c++·人工智能·docker·容器
神经星星1 小时前
无机材料逆合成效率飙升,韩国团队推出Retrieval-Retro,成果入选NeurIPS 2024
人工智能·深度学习·机器学习
大数据追光猿1 小时前
【深度学习】Pytorch项目实战-基于协同过滤实现物品推荐系统
人工智能·pytorch·python·深度学习·ai编程·推荐算法