Spark工作流程

Spark 的整个工作流程可以概括为以下步骤:

  1. 创建 SparkSession:

    • 应用程序首先需要创建一个 SparkSession 对象,它是与 Spark 的交互入口。
    • SparkSession 提供了对核心功能和各个模块的访问。
  2. 加载数据:

    • 使用 SparkSession 提供的 API,可以从不同的数据源(如文件系统、数据库、流式数据等)加载数据。
    • Spark 支持多种数据格式,如文本文件、CSV、JSON、Parquet 等。
  3. 数据转换与处理:

    • 使用 Spark 提供的转换操作,如map、filter、reduce、join 等,对数据进行转换和处理。
    • 转换操作创建了一个有向无环图(DAG),用于描述数据处理流程。
  4. 惰性求值(Lazy Evaluation):

    • Spark 中的转换操作是惰性求值的,即不会立即执行,而是构建了一个执行计划。
    • 执行计划是一个有向无环图(DAG),表示数据的转换和操作。
  5. Action 操作:

    • 当需要获取处理的结果时,可以执行 Action 操作。
    • Action 操作触发执行计划的执行,从而将转换操作转化为实际的任务并执行。
  6. 任务调度:

    • Spark 将执行计划划分为一系列的任务,每个任务对应一部分数据的处理。
    • 任务调度器将这些任务分发到集群中的 Executor 进程上执行。
  7. 数据分区和并行处理:

    • Spark 将数据分区为多个块,并将这些块分发到集群中的 Executor 上进行并行处理。
    • 每个 Executor 可以同时处理多个数据块,从而加速计算过程。
  8. 任务执行:

    • Executor 进程接收到任务后,根据任务的描述,加载数据并执行相应的操作。
    • Executor 将计算结果保存在内存中,以便后续的转换和操作。
  9. 结果返回:

    • 执行完所有的任务后,结果可以返回给驱动程序(Driver)进行处理。
    • 驱动程序可以对结果进行进一步的处理、输出或保存。

整个流程中,Spark 通过惰性求值和执行计划的方式实现了高效的数据流处理。它利用分布式计算和内存存储的优势,将数据加载到内存中进行处理,从而加速了计算过程。同时,Spark 提供了丰富的转换和操作操作,使得用户可以快速高效地处理和分析大规模数据集。

相关推荐
Hello.Reader4 分钟前
Flink Firehose Sink 把实时流数据稳定写进 Amazon Kinesis Data Firehose
大数据·flink
humors22114 分钟前
生活道理(不定期更新)
大数据·程序人生
重生之绝世牛码18 分钟前
Linux软件安装 —— JDK安装
java·大数据·linux·运维·jdk
iceslime27 分钟前
HENU2025OS操作系统期末考试
大数据·人工智能
发哥来了10 小时前
AI视频生成企业级方案选型指南:2025年核心能力与成本维度深度对比
大数据·人工智能
北邮刘老师10 小时前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网
geneculture11 小时前
融智学形式本体论:一种基于子全域与超子域的统一认知架构
大数据·人工智能·哲学与科学统一性·信息融智学·融智时代(杂志)
xiaobaishuoAI12 小时前
分布式事务实战(Seata 版):解决分布式系统数据一致性问题(含代码教学)
大数据·人工智能·分布式·深度学习·wpf·geo
edisao13 小时前
一。星舰到底改变了什么?
大数据·开发语言·人工智能·科技·php
昨夜见军贴061614 小时前
AI审核的自我进化之路:IACheck AI审核如何通过自主学习持续提升检测报告审核能力
大数据·人工智能