Spark工作流程

Spark 的整个工作流程可以概括为以下步骤:

  1. 创建 SparkSession:

    • 应用程序首先需要创建一个 SparkSession 对象,它是与 Spark 的交互入口。
    • SparkSession 提供了对核心功能和各个模块的访问。
  2. 加载数据:

    • 使用 SparkSession 提供的 API,可以从不同的数据源(如文件系统、数据库、流式数据等)加载数据。
    • Spark 支持多种数据格式,如文本文件、CSV、JSON、Parquet 等。
  3. 数据转换与处理:

    • 使用 Spark 提供的转换操作,如map、filter、reduce、join 等,对数据进行转换和处理。
    • 转换操作创建了一个有向无环图(DAG),用于描述数据处理流程。
  4. 惰性求值(Lazy Evaluation):

    • Spark 中的转换操作是惰性求值的,即不会立即执行,而是构建了一个执行计划。
    • 执行计划是一个有向无环图(DAG),表示数据的转换和操作。
  5. Action 操作:

    • 当需要获取处理的结果时,可以执行 Action 操作。
    • Action 操作触发执行计划的执行,从而将转换操作转化为实际的任务并执行。
  6. 任务调度:

    • Spark 将执行计划划分为一系列的任务,每个任务对应一部分数据的处理。
    • 任务调度器将这些任务分发到集群中的 Executor 进程上执行。
  7. 数据分区和并行处理:

    • Spark 将数据分区为多个块,并将这些块分发到集群中的 Executor 上进行并行处理。
    • 每个 Executor 可以同时处理多个数据块,从而加速计算过程。
  8. 任务执行:

    • Executor 进程接收到任务后,根据任务的描述,加载数据并执行相应的操作。
    • Executor 将计算结果保存在内存中,以便后续的转换和操作。
  9. 结果返回:

    • 执行完所有的任务后,结果可以返回给驱动程序(Driver)进行处理。
    • 驱动程序可以对结果进行进一步的处理、输出或保存。

整个流程中,Spark 通过惰性求值和执行计划的方式实现了高效的数据流处理。它利用分布式计算和内存存储的优势,将数据加载到内存中进行处理,从而加速了计算过程。同时,Spark 提供了丰富的转换和操作操作,使得用户可以快速高效地处理和分析大规模数据集。

相关推荐
数据猿7 小时前
【金猿CIO展】上海虹迪物流科技有限公司董事长兼CIO张鹏飞:聚焦数字化核心——物流供应链的的智慧演进之路
大数据·科技
deepdata_cn8 小时前
“深数据” vs “大数据”
大数据·bigdata·深数据·deepdata
数字化转型202510 小时前
SAP Signavio 在风机制造行业的深度应用研究
大数据·运维·人工智能
sheji341611 小时前
【开题答辩全过程】以 基于大数据的城市租房数据的分析与可视化为例,包含答辩的问题和答案
大数据
Biehmltym14 小时前
【AI】09AI Agent LLM → Streaming → Session 记录 的完整链路
大数据·人工智能·elasticsearch
Data-Miner15 小时前
精品PPT | 某制造集团灯塔工厂解决方案
大数据·人工智能·制造
小湘西15 小时前
Elasticsearch 的一些默认配置上下限
java·大数据·elasticsearch
`林中水滴`16 小时前
SeaTunnel vs Flume
大数据·flume
边缘计算社区16 小时前
第12届全球边缘计算大会-精彩瞬间
大数据·人工智能·边缘计算
`林中水滴`17 小时前
Iceberg vs Hudi
数据仓库