Spark工作流程

Spark 的整个工作流程可以概括为以下步骤:

  1. 创建 SparkSession:

    • 应用程序首先需要创建一个 SparkSession 对象,它是与 Spark 的交互入口。
    • SparkSession 提供了对核心功能和各个模块的访问。
  2. 加载数据:

    • 使用 SparkSession 提供的 API,可以从不同的数据源(如文件系统、数据库、流式数据等)加载数据。
    • Spark 支持多种数据格式,如文本文件、CSV、JSON、Parquet 等。
  3. 数据转换与处理:

    • 使用 Spark 提供的转换操作,如map、filter、reduce、join 等,对数据进行转换和处理。
    • 转换操作创建了一个有向无环图(DAG),用于描述数据处理流程。
  4. 惰性求值(Lazy Evaluation):

    • Spark 中的转换操作是惰性求值的,即不会立即执行,而是构建了一个执行计划。
    • 执行计划是一个有向无环图(DAG),表示数据的转换和操作。
  5. Action 操作:

    • 当需要获取处理的结果时,可以执行 Action 操作。
    • Action 操作触发执行计划的执行,从而将转换操作转化为实际的任务并执行。
  6. 任务调度:

    • Spark 将执行计划划分为一系列的任务,每个任务对应一部分数据的处理。
    • 任务调度器将这些任务分发到集群中的 Executor 进程上执行。
  7. 数据分区和并行处理:

    • Spark 将数据分区为多个块,并将这些块分发到集群中的 Executor 上进行并行处理。
    • 每个 Executor 可以同时处理多个数据块,从而加速计算过程。
  8. 任务执行:

    • Executor 进程接收到任务后,根据任务的描述,加载数据并执行相应的操作。
    • Executor 将计算结果保存在内存中,以便后续的转换和操作。
  9. 结果返回:

    • 执行完所有的任务后,结果可以返回给驱动程序(Driver)进行处理。
    • 驱动程序可以对结果进行进一步的处理、输出或保存。

整个流程中,Spark 通过惰性求值和执行计划的方式实现了高效的数据流处理。它利用分布式计算和内存存储的优势,将数据加载到内存中进行处理,从而加速了计算过程。同时,Spark 提供了丰富的转换和操作操作,使得用户可以快速高效地处理和分析大规模数据集。

相关推荐
nini_boom3 小时前
**论文初稿撰写工具2025推荐,高效写作与智能辅助全解析*
大数据·python·信息可视化
小园子的小菜4 小时前
Elasticsearch高阶用法实战:从数据建模到集群管控的极致优化
大数据·elasticsearch·搜索引擎
源码之家5 小时前
机器学习:基于大数据二手房房价预测与分析系统 可视化 线性回归预测算法 Django框架 链家网站 二手房 计算机毕业设计✅
大数据·算法·机器学习·数据分析·spark·线性回归·推荐算法
干就完事了6 小时前
Hive内置函数
数据仓库·hive·hadoop
布吉岛没有岛_7 小时前
Hadoop学习_week1
大数据·hadoop
阿里云大数据AI技术9 小时前
云栖实录 | 洋钱罐基于 EMR Serverless 产品构建全球一体化数字金融平台
大数据·运维
正在走向自律12 小时前
大数据时代时序数据库选型指南:从技术架构到实战案例
大数据·架构·时序数据库
攻城狮7号12 小时前
万物互联时代,如何选择合适的时序数据库?
大数据·物联网·时序数据库·apache iotdb·sql mcp
黄焖鸡能干四碗13 小时前
网络安全态势报告,网络安全风险评估报告文档
大数据·网络·安全·web安全·信息可视化·需求分析
勇往直前plus14 小时前
ElasticSearch详解(篇二)
大数据·elasticsearch·jenkins