RabbitMQ

大家好我是苏麟今天带来rabbitmq.

RabbitMQ

RabbitMQ官网 : RabbitMQ: easy to use, flexible messaging and streaming --- RabbitMQ

初识MQ

同步和异步通讯

微服务间通讯有同步和异步两种方式:

同步通讯:就像打电话,需要实时响应。

异步通讯:就像发邮件,不需要马上回复。

两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与 多个人收发邮件,但是往往响应会有延迟。

同步通讯

我们之前学习的Feign调用就属于同步方式,虽然调用可以实时得到结果,但存在下面的问题

总结:

同步调用的优点:

  • 时效性较强,可以立即得到结果

同步调用的问题:

  • 耦合度高
  • 性能和吞吐能力下降
  • 有额外的资源消耗
  • 有级联失败问题

异步通讯

异步调用则可以避免上述问题:

我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响 应的库存并准备发货。

在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件 (event),事件中带上订单id。 订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务 即可。

为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布 者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。

Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线 就像协议一样,让服务间的通讯变得标准和可控。

好处:

  • 吞吐量提升:无需等待订阅者处理完成,响应更快速
  • 故障隔离:服务没有直接调用,不存在级联失败问题
  • 调用间没有阻塞,不会造成无效的资源占用 耦合度极低,每个服务都可以灵活插拔,可替换
  • 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件

缺点:

  • 架构复杂了,业务没有明显的流程线,不好管理
  • 需要依赖于Broker的可靠、安全、性能

好在现在开源软件或云平台上 Broker 的软件是非常成熟的,比较常见的一种就是我们今天要学习的MQ 技术。

技术对比:

MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的 Broker。

比较常见的MQ实现:

  • ActiveMQ
  • RabbitMQ
  • RocketMQ
  • Kafka

几种常见MQ的对比:

追求可用性:Kafka、 RocketMQ 、RabbitMQ

追求可靠性:RabbitMQ、RocketMQ

追求吞吐能力:RocketMQ、Kafka

追求消息低延迟:RabbitMQ、Kafka

快速入门

安装RabbitMQ

安装 : RabbitMQ部署指南_踏遍三十六岸的博客-CSDN博客

MQ的基本结构:

RabbitMQ中的一些角色:

  • publisher:生产者
  • consumer:消费者
  • exchange个:交换机,负责消息路由
  • queue:队列,存储消息
  • virtualHost:虚拟主机,隔离不同租户的exchange、queue、消息的隔离
相关推荐
Allen Bright11 分钟前
Spring Boot 整合 RabbitMQ:手动 ACK 与 QoS 配置详解
spring boot·rabbitmq·java-rabbitmq
MZWeiei17 分钟前
Zookeeper的选举机制
大数据·分布式·zookeeper
学计算机的睿智大学生18 分钟前
Hadoop集群搭建
大数据·hadoop·分布式
一路狂飙的猪18 分钟前
RabbitMQ的工作模型
分布式·rabbitmq
miss writer1 小时前
Redis分布式锁释放锁是否必须用lua脚本?
redis·分布式·lua
m0_748254881 小时前
DataX3.0+DataX-Web部署分布式可视化ETL系统
前端·分布式·etl
字节程序员2 小时前
Jmeter分布式压力测试
分布式·jmeter·压力测试
ProtonBase3 小时前
如何从 0 到 1 ,打造全新一代分布式数据架构
java·网络·数据库·数据仓库·分布式·云原生·架构
时时刻刻看着自己的心3 小时前
clickhouse分布式表插入数据不用带ON CLUSTER
分布式·clickhouse
Data跳动11 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark