[动手学深度学习]生成对抗网络GAN学习笔记

论文原文:Generative Adversarial Nets (neurips.cc)

李沐GAN论文逐段精读:GAN论文逐段精读【论文精读】_哔哩哔哩_bilibili

论文代码:http://www.github.com/goodfeli/adversarial

Ian, J. et al. (2014) 'Generative adversarial network', NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems , Vol. 2, pp 2672--2680. doi: https://doi.org/10.48550/arXiv.1406.2661

未完待续

  1. GAN

1.1. 整体实现步骤

1.2. GAN理念

1.3. GAN弊端和局限

2. GAN论文原文学习

2.1. Abstract

①They combined generative model and discriminative model together, which forms a new model. is the "cheating" part which focus on imitating and is the "distinguishing" part which focus on distinguishing where the data comes from.

②This model is rely on a "minmax" function

③GAN does not need Markov chains or unrolled approximate inference nets

④They designed qualitative and quantitative evaluation to analyse the feasibility of GAN

2.2. Introduction

①The authors praised deep learning and briefly mentioned its prospects

②Due to the difficulty of fitting or approximating the distribution of the ground truth, the designed a new generative model

③They compare the generated model to the person who makes counterfeit money, and the discriminative model to the police. Both parties will mutually promote and grow. The authors ultimately hope that the ability of the counterfeiter can be indistinguishable from the genuine product

④Both and are MLP, and passes random noise

⑤They just adopt backpropagation and dropout in training

corpora 全集;corpus 的复数

counterfeiter n.伪造者;制假者;仿造者

①Recent works are concentrated on approximating function, such as succesful deep Boltzmann machine. However, their likelihood functions are too complex to process.

②Therefore, here comes generative model, which only generates samples but does not approximates function. Generative stochastic networks are an classic generative model.

③Their backpropagation:

④Variational autoencoders (VAEs) in Kingma and Welling and Rezende et al. do the similar work. However, VAEs are modeled by differentiate hidden units, which is contrary to GANs.

2.4. Adversarial nets

2.5. Theoretical Results

2.5.1. Global Optimality of p_g = p_data

2.5.2. Convergence of Algorithm 1

2.6. Experiments

2.7. Advantages and disadvantages

2.8. Conclusions and future work

  1. 知识补充

3.1. 散度

(1)KL散度

(2)JS散度

相关推荐
ygyqinghuan43 分钟前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交1 小时前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
newxtc3 小时前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen3 小时前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室4 小时前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
余俊晖5 小时前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树5 小时前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
伏小白白白6 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场6 小时前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉
星域智链7 小时前
宠物智能用品:当毛孩子遇上 AI,是便利还是过度?
人工智能·科技·学习·宠物