[动手学深度学习]生成对抗网络GAN学习笔记

论文原文:Generative Adversarial Nets (neurips.cc)

李沐GAN论文逐段精读:GAN论文逐段精读【论文精读】_哔哩哔哩_bilibili

论文代码:http://www.github.com/goodfeli/adversarial

Ian, J. et al. (2014) 'Generative adversarial network', NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems , Vol. 2, pp 2672--2680. doi: https://doi.org/10.48550/arXiv.1406.2661

未完待续

  1. GAN

1.1. 整体实现步骤

1.2. GAN理念

1.3. GAN弊端和局限

2. GAN论文原文学习

2.1. Abstract

①They combined generative model and discriminative model together, which forms a new model. is the "cheating" part which focus on imitating and is the "distinguishing" part which focus on distinguishing where the data comes from.

②This model is rely on a "minmax" function

③GAN does not need Markov chains or unrolled approximate inference nets

④They designed qualitative and quantitative evaluation to analyse the feasibility of GAN

2.2. Introduction

①The authors praised deep learning and briefly mentioned its prospects

②Due to the difficulty of fitting or approximating the distribution of the ground truth, the designed a new generative model

③They compare the generated model to the person who makes counterfeit money, and the discriminative model to the police. Both parties will mutually promote and grow. The authors ultimately hope that the ability of the counterfeiter can be indistinguishable from the genuine product

④Both and are MLP, and passes random noise

⑤They just adopt backpropagation and dropout in training

corpora 全集;corpus 的复数

counterfeiter n.伪造者;制假者;仿造者

①Recent works are concentrated on approximating function, such as succesful deep Boltzmann machine. However, their likelihood functions are too complex to process.

②Therefore, here comes generative model, which only generates samples but does not approximates function. Generative stochastic networks are an classic generative model.

③Their backpropagation:

④Variational autoencoders (VAEs) in Kingma and Welling and Rezende et al. do the similar work. However, VAEs are modeled by differentiate hidden units, which is contrary to GANs.

2.4. Adversarial nets

2.5. Theoretical Results

2.5.1. Global Optimality of p_g = p_data

2.5.2. Convergence of Algorithm 1

2.6. Experiments

2.7. Advantages and disadvantages

2.8. Conclusions and future work

  1. 知识补充

3.1. 散度

(1)KL散度

(2)JS散度

相关推荐
lucky_lyovo38 分钟前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch43 分钟前
pytorch例子计算两张图相似度
人工智能·pytorch·python
AndrewHZ2 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊2 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
Code_流苏3 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3353 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩3 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉3 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
念念01073 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
nonono3 小时前
深度学习——常见的神经网络
人工智能·深度学习·神经网络