[动手学深度学习]生成对抗网络GAN学习笔记

论文原文:Generative Adversarial Nets (neurips.cc)

李沐GAN论文逐段精读:GAN论文逐段精读【论文精读】_哔哩哔哩_bilibili

论文代码:http://www.github.com/goodfeli/adversarial

Ian, J. et al. (2014) 'Generative adversarial network', NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems , Vol. 2, pp 2672--2680. doi: https://doi.org/10.48550/arXiv.1406.2661

未完待续

  1. GAN

1.1. 整体实现步骤

1.2. GAN理念

1.3. GAN弊端和局限

2. GAN论文原文学习

2.1. Abstract

①They combined generative model and discriminative model together, which forms a new model. is the "cheating" part which focus on imitating and is the "distinguishing" part which focus on distinguishing where the data comes from.

②This model is rely on a "minmax" function

③GAN does not need Markov chains or unrolled approximate inference nets

④They designed qualitative and quantitative evaluation to analyse the feasibility of GAN

2.2. Introduction

①The authors praised deep learning and briefly mentioned its prospects

②Due to the difficulty of fitting or approximating the distribution of the ground truth, the designed a new generative model

③They compare the generated model to the person who makes counterfeit money, and the discriminative model to the police. Both parties will mutually promote and grow. The authors ultimately hope that the ability of the counterfeiter can be indistinguishable from the genuine product

④Both and are MLP, and passes random noise

⑤They just adopt backpropagation and dropout in training

corpora 全集;corpus 的复数

counterfeiter n.伪造者;制假者;仿造者

①Recent works are concentrated on approximating function, such as succesful deep Boltzmann machine. However, their likelihood functions are too complex to process.

②Therefore, here comes generative model, which only generates samples but does not approximates function. Generative stochastic networks are an classic generative model.

③Their backpropagation:

④Variational autoencoders (VAEs) in Kingma and Welling and Rezende et al. do the similar work. However, VAEs are modeled by differentiate hidden units, which is contrary to GANs.

2.4. Adversarial nets

2.5. Theoretical Results

2.5.1. Global Optimality of p_g = p_data

2.5.2. Convergence of Algorithm 1

2.6. Experiments

2.7. Advantages and disadvantages

2.8. Conclusions and future work

  1. 知识补充

3.1. 散度

(1)KL散度

(2)JS散度

相关推荐
强化学习与机器人控制仿真3 小时前
RSL-RL:开源人形机器人强化学习控制研究库
开发语言·人工智能·stm32·神经网络·机器人·强化学习·模仿学习
网易智企4 小时前
智能玩具新纪元:一个AI能力底座开启创新“加速度”
人工智能·microsoft
咚咚王者4 小时前
人工智能之数据分析 numpy:第十二章 数据持久化
人工智能·数据分析·numpy
沛沛老爹4 小时前
AI应用入门之LangChain中SerpAPI、LLM-Math等Tools的集成方法实践
人工智能·langchain·llm·ai入门·serpapi
roman_日积跬步-终至千里5 小时前
【强化学习基础(5)】策略搜索与学徒学习:从专家行为中学习加速学习过程
人工智能
杭州泽沃电子科技有限公司6 小时前
在线监测:为医药精细化工奠定安全、合规与质量基石
运维·人工智能·物联网·安全·智能监测
GIS数据转换器6 小时前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
OJAC1117 小时前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
机器之心7 小时前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai
可观测性用观测云7 小时前
观测云 MCP Server 接入和使用最佳实践
人工智能