[动手学深度学习]生成对抗网络GAN学习笔记

论文原文:Generative Adversarial Nets (neurips.cc)

李沐GAN论文逐段精读:GAN论文逐段精读【论文精读】_哔哩哔哩_bilibili

论文代码:http://www.github.com/goodfeli/adversarial

Ian, J. et al. (2014) 'Generative adversarial network', NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems , Vol. 2, pp 2672--2680. doi: https://doi.org/10.48550/arXiv.1406.2661

未完待续

  1. GAN

1.1. 整体实现步骤

1.2. GAN理念

1.3. GAN弊端和局限

2. GAN论文原文学习

2.1. Abstract

①They combined generative model and discriminative model together, which forms a new model. is the "cheating" part which focus on imitating and is the "distinguishing" part which focus on distinguishing where the data comes from.

②This model is rely on a "minmax" function

③GAN does not need Markov chains or unrolled approximate inference nets

④They designed qualitative and quantitative evaluation to analyse the feasibility of GAN

2.2. Introduction

①The authors praised deep learning and briefly mentioned its prospects

②Due to the difficulty of fitting or approximating the distribution of the ground truth, the designed a new generative model

③They compare the generated model to the person who makes counterfeit money, and the discriminative model to the police. Both parties will mutually promote and grow. The authors ultimately hope that the ability of the counterfeiter can be indistinguishable from the genuine product

④Both and are MLP, and passes random noise

⑤They just adopt backpropagation and dropout in training

corpora 全集;corpus 的复数

counterfeiter n.伪造者;制假者;仿造者

①Recent works are concentrated on approximating function, such as succesful deep Boltzmann machine. However, their likelihood functions are too complex to process.

②Therefore, here comes generative model, which only generates samples but does not approximates function. Generative stochastic networks are an classic generative model.

③Their backpropagation:

④Variational autoencoders (VAEs) in Kingma and Welling and Rezende et al. do the similar work. However, VAEs are modeled by differentiate hidden units, which is contrary to GANs.

2.4. Adversarial nets

2.5. Theoretical Results

2.5.1. Global Optimality of p_g = p_data

2.5.2. Convergence of Algorithm 1

2.6. Experiments

2.7. Advantages and disadvantages

2.8. Conclusions and future work

  1. 知识补充

3.1. 散度

(1)KL散度

(2)JS散度

相关推荐
乂爻yiyao几秒前
Vibe Coding 工程化实践
人工智能·ai
lili-felicity4 分钟前
CANN批处理优化技巧:从动态批处理到流水线并行
人工智能·python
一枕眠秋雨>o<11 分钟前
算子之力:解码CANN ops-nn如何重塑昇腾AI计算范式
人工智能
AI科技12 分钟前
原创音乐人运用AI编曲软件,编曲怎么配和弦的声音
人工智能
dazzle14 分钟前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
那个村的李富贵16 分钟前
智能炼金术:CANN加速的新材料AI设计系统
人工智能·算法·aigc·cann
凯子坚持 c17 分钟前
CANN 生态新星:`minddata-dataset-engine` 如何加速 AI 数据 pipeline
人工智能
Fairy要carry19 分钟前
面试-GRPO强化学习
开发语言·人工智能
xiaobaibai15320 分钟前
营销自动化终极形态:AdAgent 自主闭环工作流全解析
大数据·人工智能·自动化
自不量力的A同学27 分钟前
Solon AI v3.9 正式发布:全能 Skill 爆发
java·网络·人工智能