[动手学深度学习]生成对抗网络GAN学习笔记

论文原文:Generative Adversarial Nets (neurips.cc)

李沐GAN论文逐段精读:GAN论文逐段精读【论文精读】_哔哩哔哩_bilibili

论文代码:http://www.github.com/goodfeli/adversarial

Ian, J. et al. (2014) 'Generative adversarial network', NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems , Vol. 2, pp 2672--2680. doi: https://doi.org/10.48550/arXiv.1406.2661

未完待续

  1. GAN

1.1. 整体实现步骤

1.2. GAN理念

1.3. GAN弊端和局限

2. GAN论文原文学习

2.1. Abstract

①They combined generative model and discriminative model together, which forms a new model. is the "cheating" part which focus on imitating and is the "distinguishing" part which focus on distinguishing where the data comes from.

②This model is rely on a "minmax" function

③GAN does not need Markov chains or unrolled approximate inference nets

④They designed qualitative and quantitative evaluation to analyse the feasibility of GAN

2.2. Introduction

①The authors praised deep learning and briefly mentioned its prospects

②Due to the difficulty of fitting or approximating the distribution of the ground truth, the designed a new generative model

③They compare the generated model to the person who makes counterfeit money, and the discriminative model to the police. Both parties will mutually promote and grow. The authors ultimately hope that the ability of the counterfeiter can be indistinguishable from the genuine product

④Both and are MLP, and passes random noise

⑤They just adopt backpropagation and dropout in training

corpora 全集;corpus 的复数

counterfeiter n.伪造者;制假者;仿造者

①Recent works are concentrated on approximating function, such as succesful deep Boltzmann machine. However, their likelihood functions are too complex to process.

②Therefore, here comes generative model, which only generates samples but does not approximates function. Generative stochastic networks are an classic generative model.

③Their backpropagation:

④Variational autoencoders (VAEs) in Kingma and Welling and Rezende et al. do the similar work. However, VAEs are modeled by differentiate hidden units, which is contrary to GANs.

2.4. Adversarial nets

2.5. Theoretical Results

2.5.1. Global Optimality of p_g = p_data

2.5.2. Convergence of Algorithm 1

2.6. Experiments

2.7. Advantages and disadvantages

2.8. Conclusions and future work

  1. 知识补充

3.1. 散度

(1)KL散度

(2)JS散度

相关推荐
lihuayong4 分钟前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
政安晨12 分钟前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
一ge科研小菜鸡18 分钟前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河20 分钟前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型
维维180-3121-145521 分钟前
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
人工智能·chatgpt
終不似少年遊*33 分钟前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
杜大哥42 分钟前
如何在WPS打开的word、excel文件中,使用AI?
人工智能·word·excel·wps
Leiditech__1 小时前
人工智能时代电子机器人静电问题及电路设计防范措施
人工智能·嵌入式硬件·机器人·硬件工程
谨慎谦虚1 小时前
Trae 体验:探索被忽视的 Chat 模式
人工智能·trae
北极的树2 小时前
AI驱动的大前端开发工作流
人工智能