李沐机器学习环境配置相关

李沐机器学习环境配置相关

conda

退出 conda 环境

bash 复制代码
conda deactivate

进入都d2l环境

bash 复制代码
conda activate d2l

启动jupyter notebook:

bash 复制代码
jupyter notebook

python

列出所有安装的包

bash 复制代码
pip lsit

环境安装指令

安装miniconda

bash 复制代码
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh

新建d2L环境

bash 复制代码
conda create --name d2l python=3.9 -y

激活d2l环境

bash 复制代码
conda activate d2l

安装cpu版本torch

bash 复制代码
pip install torch==1.12.0
pip install torchvision==0.13.0

查看cuda版本

bash 复制代码
nvidia-smi

安装GPU版本,我的cuda版本是11.4,装了11.3的

下面连接可以下载不同版本的pytorch

https://pytorch.org/get-started/previous-versions/

bash 复制代码
 conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

安装jupyter

bash 复制代码
conda install jupyter
bash 复制代码
pip install d2l==0.17.6

测试GPU是否可以使用

python 复制代码
import torch
flag = torch.cuda.is_available()
print(flag)

ngpu= 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print(device)
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda()) 

True

cuda:0

GeForce GTX 1080

tensor([[0.9530, 0.4746, 0.9819],

0.7192, 0.9427, 0.6768\], \[0.8594, 0.9490, 0.6551\]\], device='cuda:0')

相关推荐
美团技术团队7 分钟前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁2 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊2 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元3 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒3 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生4 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报5 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc
AI小云5 小时前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
xiaohouzi1122335 小时前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
用户125205597085 小时前
解决Stable Diffusion WebUI训练嵌入式模型报错问题
人工智能