李沐机器学习环境配置相关

李沐机器学习环境配置相关

conda

退出 conda 环境

bash 复制代码
conda deactivate

进入都d2l环境

bash 复制代码
conda activate d2l

启动jupyter notebook:

bash 复制代码
jupyter notebook

python

列出所有安装的包

bash 复制代码
pip lsit

环境安装指令

安装miniconda

bash 复制代码
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh

新建d2L环境

bash 复制代码
conda create --name d2l python=3.9 -y

激活d2l环境

bash 复制代码
conda activate d2l

安装cpu版本torch

bash 复制代码
pip install torch==1.12.0
pip install torchvision==0.13.0

查看cuda版本

bash 复制代码
nvidia-smi

安装GPU版本,我的cuda版本是11.4,装了11.3的

下面连接可以下载不同版本的pytorch

https://pytorch.org/get-started/previous-versions/

bash 复制代码
 conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

安装jupyter

bash 复制代码
conda install jupyter
bash 复制代码
pip install d2l==0.17.6

测试GPU是否可以使用

python 复制代码
import torch
flag = torch.cuda.is_available()
print(flag)

ngpu= 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print(device)
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda()) 

True

cuda:0

GeForce GTX 1080

tensor([[0.9530, 0.4746, 0.9819],

[0.7192, 0.9427, 0.6768],

[0.8594, 0.9490, 0.6551]], device='cuda:0')

相关推荐
@心都1 分钟前
机器学习数学基础:29.t检验
人工智能·机器学习
9命怪猫3 分钟前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
kcarly1 小时前
KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
人工智能·语言模型·自然语言处理
倒霉蛋小马3 小时前
【YOLOv8】损失函数
深度学习·yolo·机器学习
MinIO官方账号3 小时前
使用 AIStor 和 OpenSearch 增强搜索功能
人工智能
补三补四3 小时前
金融时间序列【量化理论】
机器学习·金融·数据分析·时间序列
江江江江江江江江江3 小时前
深度神经网络终极指南:从数学本质到工业级实现(附Keras版本代码)
人工智能·keras·dnn
Fansv5873 小时前
深度学习-2.机械学习基础
人工智能·经验分享·python·深度学习·算法·机器学习
小怪兽会微笑4 小时前
PyTorch Tensor 形状变化操作详解
人工智能·pytorch·python
Erekys4 小时前
视觉分析之边缘检测算法
人工智能·计算机视觉·音视频