李沐机器学习环境配置相关

李沐机器学习环境配置相关

conda

退出 conda 环境

bash 复制代码
conda deactivate

进入都d2l环境

bash 复制代码
conda activate d2l

启动jupyter notebook:

bash 复制代码
jupyter notebook

python

列出所有安装的包

bash 复制代码
pip lsit

环境安装指令

安装miniconda

bash 复制代码
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh

新建d2L环境

bash 复制代码
conda create --name d2l python=3.9 -y

激活d2l环境

bash 复制代码
conda activate d2l

安装cpu版本torch

bash 复制代码
pip install torch==1.12.0
pip install torchvision==0.13.0

查看cuda版本

bash 复制代码
nvidia-smi

安装GPU版本,我的cuda版本是11.4,装了11.3的

下面连接可以下载不同版本的pytorch

https://pytorch.org/get-started/previous-versions/

bash 复制代码
 conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

安装jupyter

bash 复制代码
conda install jupyter
bash 复制代码
pip install d2l==0.17.6

测试GPU是否可以使用

python 复制代码
import torch
flag = torch.cuda.is_available()
print(flag)

ngpu= 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print(device)
print(torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda()) 

True

cuda:0

GeForce GTX 1080

tensor([[0.9530, 0.4746, 0.9819],

0.7192, 0.9427, 0.6768\], \[0.8594, 0.9490, 0.6551\]\], device='cuda:0')

相关推荐
搞笑的秀儿4 分钟前
信息新技术
大数据·人工智能·物联网·云计算·区块链
阿里云大数据AI技术22 分钟前
OpenSearch 视频 RAG 实践
数据库·人工智能·llm
XMAIPC_Robot35 分钟前
基于ARM+FPGA的光栅尺精密位移加速度测试解决方案
arm开发·人工智能·fpga开发·自动化·边缘计算
加油吧zkf44 分钟前
YOLO目标检测数据集类别:分类与应用
人工智能·计算机视觉·目标跟踪
Blossom.1181 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
天天扭码1 小时前
AI时代,前端如何处理大模型返回的多模态数据?
前端·人工智能·面试
巴伦是只猫1 小时前
【机器学习笔记 Ⅱ】1 神经网络
笔记·神经网络·机器学习
难受啊马飞2.01 小时前
如何判断 AI 将优先自动化哪些任务?
运维·人工智能·ai·语言模型·程序员·大模型·大模型学习
顺丰同城前端技术团队1 小时前
掌握未来:构建专属领域的大模型与私有知识库——从部署到微调的全面指南
人工智能·deepseek
许泽宇的技术分享1 小时前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能