[23] IPDreamer: Appearance-Controllable 3D Object Generation with Image Prompts

pdf

  • Text-to-3D任务中,对3D模型外观的控制不强,本文提出IPDreamer来解决该问题。
  • 在NeRF Training阶段,IPDreamer根据文本用ControlNet生成参考图,并将参考图作为Zero 1-to-3的控制条件,用基于Zero 1-to-3的SDS损失生成粗NeRF。
  • 在Mesh Training阶段,IPDreamer将NeRF用DMTet转换为3D Mesh,并分别优化Mesh的几何与纹理。1)用参考图的法向图编码作为控制信号,用IPSD (Image Prompt Score Distillation) 优化3D Mesh的几何;2)用渲染rgb图像编码(和法向图差异)作为控制信号,用IPSD优化3D Mesh的纹理。
  • 将Text-to-3D任务,转换为单图重建任务,实现了更好的外观控制。

目录

Method

[NeRF Training](#NeRF Training)

[Mesh Training](#Mesh Training)

Experiments

[Some Results](#Some Results)

[​编辑Comparison with SOTA Text-to-3D Methods](#编辑Comparison with SOTA Text-to-3D Methods)


Method

NeRF Training

  • Image Generation. 给定文本描述和控制条件,本文用ControlNet生成参考图片。
  • Training of the Coarse NeRF Model. 给定参考图片,本文用基于Zero 1-to-3的SDS损失生成粗NeRF。

Mesh Training

  • Mesh Extraction. 给定粗NeRF,本文用DMTet将其转换为3D Mesh。3D Mesh由顶点V和四面体T(tetrahedrons)组成。每个顶点包含一个signed distance field (SDF) 值和形变值组成。描述了相较于初始正则坐标的变换。本文基于IPSD优化
  • Geometry Optimization. Fantasia3D和ProlificDreamer用SDS优化3D Mesh的法向图,实现几何优化。但常用扩散模型缺少法向图的训练数据,导致几何优化效果不佳。为解决该问题,本文引入法向图编码,其中是IP-Adapter的denosing model。IPSD几何损失表达如下:
  • Texture Optimization. 首先,提取参考图像编码。其次,计算渲染角度和参考角度的法向图编码,并计算差值得到。这一步的目的是希望用来表征任意渲染角度图像的图像编码。IPSD纹理损失表达如下:

Experiments

Some Results

Comparison with SOTA Text-to-3D Methods

相关推荐
starsongda4 小时前
科技成果跃然“屏”上,虚拟展厅引领科技展示新风尚
科技·3d·虚拟现实
梦想的理由5 小时前
3D人体建模的前沿探索(二):深入解析SMPL-IK与多视角人体网格重建
3d
道可云9 小时前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
Sitarrrr12 小时前
【Unity】ScriptableObject的应用和3D物体跟随鼠标移动:鼠标放置物体在场景中
3d·unity
starsongda1 天前
VR科技展厅重塑科技展示新风貌,引领未来展示潮流
科技·3d·vr
兔老大的胡萝卜1 天前
threejs 数字孪生,制作3d炫酷网页
前端·3d
CV-X.WANG1 天前
【详细 工程向】基于Smart3D的五镜头相机三维重建
数码相机·3d
JoeyKo2 天前
国内版Sketchfab平台 - CG美术之家(3D编辑发布篇)
3d·3d建模·3dsmax·3d渲染·模型·3d模型·cg模型
mirrornan2 天前
3D互动+AR试戴,重塑线上珠宝营销新体验!
3d·ar
DisonTangor2 天前
腾讯混元3D-1.0:文本到三维和图像到三维生成的统一框架
人工智能·3d·aigc