多输入多输出 | MATLAB实现CNN-GRU-Attention卷积神经网络-门控循环单元结合SE注意力机制的多输入多输出预测
目录
预测效果
基本介绍
多输入多输出 | MATLAB实现CNN-GRU-Attention卷积神经网络-门控循环单元结合SE注意力机制的多输入多输出预测 注释清晰 Matlab语言
1.CNN-GRU-Attention多输出回归预测,多输入多输出 , matlab需要2020b及以上版本 评价指标包括:R2、MAE等,效果如图所示,代码质量极高~
2.直接替换数据即可用,适合新手小白~
3.附赠案例数据,如图所示,实际使用中3个、4个输出均可 直接运行main即可一键出图~
程序设计
- 完整程序和数据下载方式私信博主回复:MATLAB实现CNN-GRU-Attention卷积神经网络-门控循环单元结合SE注意力机制的多输入多输出预测。
clike
miniBatchSize = 32;
options = trainingOptions("adam", ...
MaxEpochs=3, ...
MiniBatchSize=miniBatchSize, ...
InitialLearnRate=0.005, ...
LearnRateDropPeriod=2, ...
LearnRateSchedule="piecewise", ...
L2Regularization=5e-4, ...
SequencePaddingDirection="left", ...
Shuffle="every-epoch", ...
ValidationFrequency=floor(numel(featuresTrain)/miniBatchSize), ...
ValidationData={featuresValidation,labelsValidation}, ...
Verbose=false, ...
Plots="training-progress");
net = trainNetwork(featuresTrain,labelsTrain,layers,options);
function features = extractFeatures(X,afe)
features = log(extract(afe,X) + eps);
features = permute(features, [2 3 1]);
features = {features};
end
往期精彩
MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261