多输入多输出 | Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

多输入多输出 | Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

目录

预测效果




基本介绍

Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

1.data为数据集,10个输入特征,3个输出变量。

2.main.m为主程序文件。

3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。

程序设计

clike 复制代码
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);

[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);

%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数

%% 构建网络
net = newff(p_train, t_train, hiddennum);

%% 设置训练参数
net.trainParam.epochs     = 50;      % 训练次数
net.trainParam.goal       = 1e-4;     % 目标误差
net.trainParam.lr         = 0.01;     % 学习率
net.trainParam.showWindow = 0;        % 关闭窗口

%%  参数设置
fun = @getObjValue;                                 % 目标函数
dim = inputnum * hiddennum + hiddennum * outputnum + ...
    hiddennum + outputnum;                          % 优化参数个数
lb  = -1 * ones(1, dim);                            % 优化参数目标下限
ub  =  1 * ones(1, dim);                            % 优化参数目标上限
pop = 20;                                            % 数量
Max_iteration = 20;                                 % 最大迭代次数   

%% 优化算法
[Best_score,Best_pos,curve] = SSA(pop, Max_iteration, lb, ub, dim, fun); 

%% 把最优初始阀值权值赋予网络预测
w1 = Best_pos(1 : inputnum * hiddennum);
B1 = Best_pos(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = Best_pos(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum + hiddennum + hiddennum*outputnum);
B2 = Best_pos(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
    inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/116377961 \[2\] https://blog.csdn.net/kjm13182345320/article/details/127931217 \[3\] https://blog.csdn.net/kjm13182345320/article/details/127894261

相关推荐
AI波克布林4 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力
Re_draw_debubu20 小时前
神经网络 小土堆pytorch记录
pytorch·神经网络·小土堆
重启的码农1 天前
ggml 介绍(5) GGUF 上下文 (gguf_context)
c++·人工智能·神经网络
楚韵天工1 天前
基于多分类的工业异常声检测及应用
人工智能·深度学习·神经网络·目标检测·机器学习·分类·数据挖掘
老艾的AI世界1 天前
AI去、穿、换装软件下载,无内容限制,偷偷收藏
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai·换装·虚拟试衣·ai换装·一键换装
壹Y.2 天前
MATLAB 绘图速查笔记
笔记·matlab
Evand J2 天前
【MATLAB例程】滑动窗口均值滤波、中值滤波、最小值/最大值滤波对比。附代码下载链接
开发语言·matlab·均值算法
khystal2 天前
ISTA为什么要加上软阈值激活函数?r若没有L1 正则化也要加其他激活函数吗?
神经网络·信号处理
重启的码农2 天前
ggml介绍 (2) 量化 (Quantization)
人工智能·神经网络
重启的码农2 天前
ggml介绍 (1) 张量 (ggml_tensor)
神经网络