多输入多输出 | Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

多输入多输出 | Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

目录

预测效果




基本介绍

Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

1.data为数据集,10个输入特征,3个输出变量。

2.main.m为主程序文件。

3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。

程序设计

clike 复制代码
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);

[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);

%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数

%% 构建网络
net = newff(p_train, t_train, hiddennum);

%% 设置训练参数
net.trainParam.epochs     = 50;      % 训练次数
net.trainParam.goal       = 1e-4;     % 目标误差
net.trainParam.lr         = 0.01;     % 学习率
net.trainParam.showWindow = 0;        % 关闭窗口

%%  参数设置
fun = @getObjValue;                                 % 目标函数
dim = inputnum * hiddennum + hiddennum * outputnum + ...
    hiddennum + outputnum;                          % 优化参数个数
lb  = -1 * ones(1, dim);                            % 优化参数目标下限
ub  =  1 * ones(1, dim);                            % 优化参数目标上限
pop = 20;                                            % 数量
Max_iteration = 20;                                 % 最大迭代次数   

%% 优化算法
[Best_score,Best_pos,curve] = SSA(pop, Max_iteration, lb, ub, dim, fun); 

%% 把最优初始阀值权值赋予网络预测
w1 = Best_pos(1 : inputnum * hiddennum);
B1 = Best_pos(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = Best_pos(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum + hiddennum + hiddennum*outputnum);
B2 = Best_pos(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
    inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/116377961 \[2\] https://blog.csdn.net/kjm13182345320/article/details/127931217 \[3\] https://blog.csdn.net/kjm13182345320/article/details/127894261

相关推荐
Stara05113 小时前
基于注意力机制与iRMB模块的YOLOv11改进模型—高效轻量目标检测新范式
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
X Y O3 小时前
神经网络初步学习——感知机
人工智能·神经网络·学习·感知机
强化学习与机器人控制仿真4 小时前
openpi 入门教程
开发语言·人工智能·python·深度学习·神经网络·机器人·自动驾驶
风亦辰7395 小时前
神经网络是如何工作的
人工智能·深度学习·神经网络
天上路人5 小时前
采用AI神经网络降噪算法的通信语音降噪(ENC)模组性能测试和应用
人工智能·神经网络·算法
搏博6 小时前
生成对抗网络(GAN)深度解析:理论、技术与应用全景
人工智能·神经网络·生成对抗网络
1296004527 小时前
神经元和神经网络定义
人工智能·深度学习·神经网络
Francek Chen10 小时前
【现代深度学习技术】注意力机制05:多头注意力
人工智能·pytorch·深度学习·神经网络·注意力机制
翱翔-蓝天12 小时前
MATLAB 在医疗行业的应用
开发语言·matlab
hie9889421 小时前
matlab稳定求解高精度二维对流扩散方程
算法·机器学习·matlab