多输入多输出 | Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

多输入多输出 | Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

目录

预测效果




基本介绍

Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

1.data为数据集,10个输入特征,3个输出变量。

2.main.m为主程序文件。

3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。

程序设计

clike 复制代码
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);

[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);

%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数

%% 构建网络
net = newff(p_train, t_train, hiddennum);

%% 设置训练参数
net.trainParam.epochs     = 50;      % 训练次数
net.trainParam.goal       = 1e-4;     % 目标误差
net.trainParam.lr         = 0.01;     % 学习率
net.trainParam.showWindow = 0;        % 关闭窗口

%%  参数设置
fun = @getObjValue;                                 % 目标函数
dim = inputnum * hiddennum + hiddennum * outputnum + ...
    hiddennum + outputnum;                          % 优化参数个数
lb  = -1 * ones(1, dim);                            % 优化参数目标下限
ub  =  1 * ones(1, dim);                            % 优化参数目标上限
pop = 20;                                            % 数量
Max_iteration = 20;                                 % 最大迭代次数   

%% 优化算法
[Best_score,Best_pos,curve] = SSA(pop, Max_iteration, lb, ub, dim, fun); 

%% 把最优初始阀值权值赋予网络预测
w1 = Best_pos(1 : inputnum * hiddennum);
B1 = Best_pos(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = Best_pos(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum + hiddennum + hiddennum*outputnum);
B2 = Best_pos(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
    inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/116377961 \[2\] https://blog.csdn.net/kjm13182345320/article/details/127931217 \[3\] https://blog.csdn.net/kjm13182345320/article/details/127894261

相关推荐
学好statistics和DS1 小时前
【CV】神经网络中哪些参数需要被学习?
人工智能·神经网络·学习
姜—姜1 小时前
通过构建神经网络实现项目预测
人工智能·pytorch·深度学习·神经网络
HyperAI超神经9 小时前
AI预判等离子体「暴走」,MIT等基于机器学习实现小样本下的等离子体动力学高精度预测
人工智能·神经网络·机器学习·ai·强化学习·可控核聚变·托卡马克
MYX_30911 小时前
第四章 神经网络的基本组件
pytorch·深度学习·神经网络·学习
机器学习之心HML15 小时前
MATLAB基于GWO-BP神经网络对某拨叉件锻造金属流动性的参数分析
开发语言·神经网络·matlab
hudawei99616 小时前
机器学习,深度学习,神经网络,Transformer的关系
深度学习·神经网络·机器学习
珞瑜·18 小时前
MATLAB2025B版本新特点
matlab
无风听海1 天前
神经网络之计算图
人工智能·深度学习·神经网络
二向箔reverse1 天前
神经网络中的批归一化(BatchNorm)
人工智能·深度学习·神经网络
老兵发新帖1 天前
主流神经网络快速应用指南
人工智能·深度学习·神经网络