多输入多输出 | Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

多输入多输出 | Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

目录

预测效果




基本介绍

Matlab实现SSA-BP麻雀搜索算法优化BP神经网络多输入多输出预测

1.data为数据集,10个输入特征,3个输出变量。

2.main.m为主程序文件。

3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。

程序设计

clike 复制代码
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);

[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);

%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数

%% 构建网络
net = newff(p_train, t_train, hiddennum);

%% 设置训练参数
net.trainParam.epochs     = 50;      % 训练次数
net.trainParam.goal       = 1e-4;     % 目标误差
net.trainParam.lr         = 0.01;     % 学习率
net.trainParam.showWindow = 0;        % 关闭窗口

%%  参数设置
fun = @getObjValue;                                 % 目标函数
dim = inputnum * hiddennum + hiddennum * outputnum + ...
    hiddennum + outputnum;                          % 优化参数个数
lb  = -1 * ones(1, dim);                            % 优化参数目标下限
ub  =  1 * ones(1, dim);                            % 优化参数目标上限
pop = 20;                                            % 数量
Max_iteration = 20;                                 % 最大迭代次数   

%% 优化算法
[Best_score,Best_pos,curve] = SSA(pop, Max_iteration, lb, ub, dim, fun); 

%% 把最优初始阀值权值赋予网络预测
w1 = Best_pos(1 : inputnum * hiddennum);
B1 = Best_pos(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = Best_pos(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum + hiddennum + hiddennum*outputnum);
B2 = Best_pos(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
    inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/116377961

[2] https://blog.csdn.net/kjm13182345320/article/details/127931217

[3] https://blog.csdn.net/kjm13182345320/article/details/127894261

相关推荐
孙同学要努力6 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
小言从不摸鱼11 小时前
【NLP自然语言处理】深入解析Encoder与Decoder模块:结构、作用与深度学习应用
人工智能·深度学习·神经网络·机器学习·自然语言处理·transformer·1024程序员节
Matlab程序猿小助手15 小时前
【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。
开发语言·嵌入式硬件·算法·matlab·机器人
羊小猪~~17 小时前
神经网络基础--什么是神经网络?? 常用激活函数是什么???
人工智能·vscode·深度学习·神经网络·机器学习
_清豆°17 小时前
机器学习(四)——神经网络(神经元、感知机、BP神经网络、梯度下降、多层神经网络、Python源码)
python·神经网络·机器学习·感知机·梯度下降·神经元·多层神经网络
lzt232320 小时前
深度学习中的 Dropout:原理、公式与实现解析
人工智能·python·深度学习·神经网络·transformer
IT猿手20 小时前
基于卷积神经网络(CNN)的时间序列预测,15个输入1个输出,可以更改数据集,MATLAB代码
人工智能·深度学习·神经网络·算法·matlab·cnn
埃菲尔铁塔_CV算法21 小时前
深度学习神经网络:开启智能未来的钥匙
人工智能·深度学习·神经网络
i嗑盐の小F21 小时前
【SPIE出版 | ISSN: 0277-786X,EI检索稳定!】2024年计算机视觉与图像处理国际学术会议 (CVIP 2024,11月15-17日)
大数据·图像处理·人工智能·深度学习·神经网络·机器学习·计算机视觉