LeetCode //C - 79. Word Search

Given an m x n grid of characters board and a string word , return true if word exists in the grid.

The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.

Example 1:

Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
Output: true

Example 2:

Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
Output: true

Example 3:

Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
Output: false

Constraints:
  • m == board.length
  • n = board[i].length
  • 1 <= m, n <= 6
  • 1 <= word.length <= 15
  • board and word consists of only lowercase and uppercase English letters.

From: LeetCode

Link: 79. Word Search


Solution:

Ideas:

Main Idea:

The main concept here is to use Depth First Search (DFS) to explore the board. Starting from each cell, the algorithm tries to construct the word by moving either horizontally or vertically through adjacent cells. While doing so, the algorithm makes sure not to use the same cell more than once.

Details:
1. Starting Point:

  • The function exist iterates through every cell in the board. For each cell, it checks if the word can be formed starting from that cell by invoking the dfs function.

2. DFS Function (dfs):

  • The purpose of this function is to explore all possible paths from a given cell (i, j) to see if the word can be constructed.
  • It first checks if the current cell's value matches the current character of the word (word[index]). If not, it returns false.
  • If the cell's value matches the last character of the word, it means the word is found, and it returns true.
  • If the cell's value matches the current character but is not the last character of the word, it proceeds to search in all four directions: up, down, left, and right.

3. Avoiding Revisiting the Same Cell:

  • To ensure the same cell is not used more than once, the function temporarily marks the current cell as visited by setting its value to 0 (or any character that is not a valid board character). This is a kind of "backtracking".
  • After exploring all paths from the current cell, its original value is restored, which undoes the "marking".

4. Result:

  • If at any point during the search, the dfs function finds the word, it returns true to the main exist function.
  • If the word is not found starting from any cell in the board, the exist function returns false.
Code:
c 复制代码
bool dfs(char** board, int i, int j, char* word, int index, int boardSize, int boardColSize) {
    // Base case: if the current position is out of bounds or the current character does not match
    if (i < 0 || i >= boardSize || j < 0 || j >= boardColSize || board[i][j] != word[index]) {
        return false;
    }

    // If we've reached the end of the word, then we've found a match
    if (index == strlen(word) - 1) {
        return true;
    }

    char tmp = board[i][j];
    board[i][j] = 0;  // Mark the cell as visited

    // Recursively search for the next character in all four directions (up, down, left, right)
    bool found = dfs(board, i + 1, j, word, index + 1, boardSize, boardColSize)
              || dfs(board, i - 1, j, word, index + 1, boardSize, boardColSize)
              || dfs(board, i, j + 1, word, index + 1, boardSize, boardColSize)
              || dfs(board, i, j - 1, word, index + 1, boardSize, boardColSize);

    board[i][j] = tmp;  // Restore the cell value after the DFS

    return found;
}

bool exist(char** board, int boardSize, int* boardColSize, char* word) {
    for (int i = 0; i < boardSize; i++) {
        for (int j = 0; j < boardColSize[0]; j++) {
            // Start the DFS search from each cell in the board
            if (dfs(board, i, j, word, 0, boardSize, boardColSize[0])) {
                return true;
            }
        }
    }
    return false;
}
相关推荐
【杨(_> <_)】37 分钟前
SAR信号处理重要工具-傅里叶变换(二)
算法·信号处理·傅里叶分析·菲涅尔函数
第七序章37 分钟前
【C++】AVL树的平衡机制与实现详解(附思维导图)
c语言·c++·人工智能·机器学习
怎么没有名字注册了啊41 分钟前
爬动的蠕虫
算法
取酒鱼食--【余九】42 分钟前
机器人学基础(一)【坐标系和位姿变换】
笔记·算法·机器人·开源·机器人运动学·机器人学基础
晨非辰1 小时前
【面试高频数据结构(四)】--《从单链到双链的进阶,读懂“双向奔赴”的算法之美与效率权衡》
java·数据结构·c++·人工智能·算法·机器学习·面试
im_AMBER1 小时前
数据结构 03 栈和队列
数据结构·学习·算法
凸头1 小时前
以AtomicInteger为例的Atomic 类的底层CAS细节理解
java·jvm·算法
前端小刘哥2 小时前
赋能在线教育与企业培训:视频直播点播平台EasyDSS视频点播的核心技术与应用实践
算法
吗~喽2 小时前
【LeetCode】四数之和
算法·leetcode·职场和发展
Net_Walke2 小时前
【散列函数】哈希函数简介
算法·哈希算法