论文复现:Active Learning by Learning

这篇文章说实在的,写的差强人意。

实质性内容是两个现有方法的拼凑!

讲的模模糊糊!对于复现代码不太友好!

撸一点,通读一遍 ,再撸一点,通读一遍~~~

python 复制代码
"""
注意:使用了训练集索引。
"""
import xlwt
import xlrd
import numpy as np
import pandas as pd
from pathlib import Path
from copy import deepcopy
from sklearn.preprocessing import StandardScaler
from time import time
from sklearn.metrics.pairwise import pairwise_distances
from numpy.linalg import inv
from sklearn.metrics import accuracy_score, mean_absolute_error, f1_score, mutual_info_score
from sklearn.neighbors import NearestNeighbors
np.seterr(divide='ignore',invalid='ignore')


class AL_ALBL():
    def __init__(self,X, y, labeled, budget, X_test, y_test):
        self.X = X
        self.y = y
        self.nSample, self.nDim = X.shape
        self.labels = sorted(np.unique(self.y))
        self.nClass = len(self.labels)
        self.M = np.array([[(i - j) ** 2 for i in range(self.nClass)] for j in range(self.nClass)])
        self.X_test = X_test
        self.y_test = y_test
        self.labeled = list(deepcopy(labeled))

        self.dist_matrix = pairwise_distances(X=self.X, metric='euclidean')
        self.K = -1.0 * self.dist_matrix  # 无标记样本池对应的核矩阵
        self.K_test_pool = -1.0 * pairwise_distances(X=self.X_test, Y=self.X, metric='euclidean')
        # -------------------------------------------------
        self.budgetLeft = deepcopy(budget)
        self.c = 0.01
        self.unlabeled = [i for i in range(self.nSample)]
        self.model_initial()
        # ------------------------------
        self._nstrategies = 2
        self._delta = 0.1
        self._w = np.ones(self._nstrategies)
        self._pmin = 1.0 / (self._nstrategies * 10.0)
        self._start = True
        self._aw = np.zeros(self.nSample)
        self._aw[self.labeled] = 1.0
        self._s_idx = None
        # -------------------------------
        self._pmin = 1.0 / (self._nstrategies * 10.0)
        self.PS = np.array([0.5,0.5])
        self.phi = np.zeros((2, self.nSample))
        self.Q = np.zeros(self.nSample)
        self.T = deepcopy(budget)
        self.hat_y_matrix = np.zeros((self.T, self.nSample))
        self.Wt = np.zeros((self.T, self.nSample))
        self.reward = 0.0
        self._nT = 1/ (self.nSample * self.T)



        # -------------------------------
        self.ACClist = []
        self.MZElist = []
        self.MAElist = []
        self.F1list = []
        self.MIlist = []
        self.ALC_ACC = 0.0
        self.ALC_MZE = 0.0
        self.ALC_MAE = 0.0
        self.ALC_F1 = 0.0
        self.ALC_MI = 0.0
        self.Redundancy = 0.0
        # -------------------------------

    def model_initial(self):
        self.T_labeled = self.M[self.y[self.labeled],:]
        self.K_labeled = self.K[np.ix_(self.labeled, self.labeled)]
        self.K_labeled_inv = inv(self.c * np.eye(len(self.labeled)) + self.K_labeled)
        self.Beta = self.K_labeled_inv @ self.T_labeled
        # -----------------------------
        for idx in self.labeled:
            self.unlabeled.remove(idx)
        return self

    def Block_Matrix_Inverse(self, A11_inv, A12, A21, A22):
        n = A11_inv.shape[0]
        m = A22.shape[0]
        M = np.zeros((m+n, m+n))
        B22 = inv(A22 - A21 @ A11_inv @ A12)
        B12 = -A11_inv @ A12 @ B22
        M[n:,n:] = B22
        M[:n,:n] = A11_inv - B12 @ (A21 @ A11_inv)
        M[:n,n:] = B12
        M[n:,:n] = -B22 @ A21 @ A11_inv
        return M

    def model_incremental_train(self, new_ids):
        A12 = self.K[np.ix_(self.labeled, new_ids)]
        A22 = self.K[np.ix_(new_ids, new_ids)] + self.c * np.eye(len(new_ids))
        K_bar_inv = self.Block_Matrix_Inverse(A11_inv=self.K_labeled_inv, A12=A12, A21=A12.T, A22=A22)
        T_bar = np.vstack((self.T_labeled, self.M[self.y[new_ids],:]))
        Beta_bar = K_bar_inv @ T_bar
        # --------------------------
        self.K_labeled_inv = K_bar_inv
        self.T_labeled = T_bar
        self.Beta = Beta_bar
        return self

    def tmp_incremental_train(self, tmp_idx):
        A12 = self.K[np.ix_(self.labeled, [tmp_idx])]
        A22 = self.K[np.ix_([tmp_idx], [tmp_idx])] + self.c * np.eye(1)
        K_bar_inv = self.Block_Matrix_Inverse(A11_inv=self.K_labeled_inv, A12=A12, A21=A12.T, A22=A22)
        return K_bar_inv

    def predict_proba(self, ids):
        K_test_labeled = self.K[np.ix_(ids, self.labeled)]
        output = K_test_labeled @ self.Beta
        predictions = np.linalg.norm(output[:, None] - self.M, axis=2, ord=1)
        predictions = -predictions
        predictions = np.exp(predictions)
        predictions_sum = np.sum(predictions, axis=1, keepdims=True)
        proba_matrix = predictions / predictions_sum
        return proba_matrix

    def predict(self, ids):
        K_test_labeled = self.K[np.ix_(ids, self.labeled)]
        output = K_test_labeled @ self.Beta
        predictions = np.argmin(np.linalg.norm(output[:, None] - self.M, axis=2, ord=1), axis=1)
        return predictions

    def get_EC(self, ids):
        K_test_labeled = self.K[np.ix_(ids, self.labeled)]
        output = K_test_labeled @ self.Beta
        ids_norm1 = np.linalg.norm(output[:, None] - self.M, axis=2, ord=1)
        predictions = -1.0 * deepcopy(ids_norm1)
        predictions = np.exp(predictions)
        predictions_sum = np.sum(predictions, axis=1, keepdims=True)
        proba_matrix = predictions / predictions_sum
        return np.sum(ids_norm1 * proba_matrix, axis=1)



    def evaluation(self):
        output = self.K_test_pool[:,self.labeled] @ self.Beta
        y_hat = np.argmin(np.linalg.norm(output[:, None] - self.M, axis=2, ord=1), axis=1)
        self.ACClist.append(accuracy_score(self.y_test, y_hat))
        self.MZElist.append(1-accuracy_score(self.y_test, y_hat))
        self.MAElist.append(mean_absolute_error(self.y_test, y_hat))
        self.F1list.append(f1_score(self.y_test, y_hat, average='macro'))
        self.MIlist.append(mutual_info_score(labels_true=self.y_test, labels_pred=y_hat))
        self.ALC_ACC += self.ACClist[-1]
        self.ALC_MZE += self.MZElist[-1]
        self.ALC_MAE += self.MAElist[-1]
        self.ALC_F1 += self.F1list[-1]
        self.ALC_MI += self.MIlist[-1]

    def SoftMax(self,value_list):
        exp_values = np.exp(value_list)
        sum_exp_values = np.sum(exp_values)
        return exp_values / sum_exp_values

    def select(self):
        self.evaluation()
        t = 0  #迭代次数
        while self.budgetLeft > 0:
            if not self._start:
                self._w[self._s_idx] *= np.exp(self._pmin / 2.0 * (self.reward + 1.0 / self.last_p * np.sqrt(np.log(self._nstrategies / self._delta) / self._nstrategies)))
            self._start = False
            W = self._w.sum()
            p = (1.0 - self._nstrategies * self._pmin) * self._w / W + self._pmin

            s_idx = np.random.choice(np.arange(self._nstrategies), p=p)
            tar_idx = None
            if s_idx == 0:
                print("Div")
                # ----------------Diversity sampling criterion
                dist_D_L = self.dist_matrix[np.ix_(np.arange(self.nSample), self.labeled)]
                Div = np.min(dist_D_L, axis=1)
                tar_idx = np.argmax(Div)
            elif s_idx == 1:
                print("Expected misclassification cost")
                # ----------------Least Confidence criterion
                EC = self.get_EC(ids=np.arange(self.nSample))
                tar_idx = np.argmax(EC)
                # proba_matrix = self.predict_proba(ids=np.arange(self.nSample))
                # proba_max = np.max(proba_matrix, axis=1)
                # tar_idx = np.argmin(proba_max)
            # ==========================================
            self.last_p = p[s_idx]
            # ==========================================
            if tar_idx in self.labeled:
                """不用更新模型"""
                """计算奖励"""
                hat_y = self.predict(ids=[tar_idx])
                if hat_y == self.y[tar_idx]:
                    self.reward += self._nT / p[s_idx]
            elif tar_idx not in self.labeled:
                """更新模型"""
                self.model_incremental_train(new_ids=[tar_idx])
                self.unlabeled.remove(tar_idx)
                self.labeled.append(tar_idx)
                self.budgetLeft -= 1
                self.evaluation()
                """计算奖励"""
                hat_y = self.predict(ids=[tar_idx])
                if hat_y == self.y[tar_idx]:
                    self.reward += self._nT / p[s_idx] # the IW-ACC

            # -----------------------------------------------
            t += 1  #迭代次数加一
        neigh = NearestNeighbors(n_neighbors=1)
        neigh.fit(X=self.X[self.labeled])
        self.Redundancy = (1/np.mean(neigh.kneighbors()[0].flatten()))

if __name__ == '__main__':

    # name_list = ["Balance-scale","Toy","Cleveland","Knowledge","Glass",
    #              "Melanoma","Housing-5bin","Housing-10bin","Car"]
    name_list = ["Student","Balance-scale","Newthyroid","CTGs","Knowledge","Car","Nursery",
                 "Toy","Melanoma","Eucalyptus","Glass","Obesity1","stock-10bin","Computer-10bin"]

    class results():
        def __init__(self):
            self.ACCList = []
            self.MZEList = []
            self.MAEList = []
            self.F1List = []
            self.MIList = []
            self.ALC_ACC = []
            self.ALC_MZE = []
            self.ALC_MAE = []
            self.ALC_F1 = []
            self.ALC_MI = []
            self.Redun = []

    class stores():
        def __init__(self):
            self.num_labeled_mean = []
            self.num_labeled_std = []
            #-----------------------
            self.ACCList_mean = []
            self.ACCList_std = []
            #-----------------------
            self.MZEList_mean = []
            self.MZEList_std = []
            # -----------------
            self.MAEList_mean = []
            self.MAEList_std = []
            # -----------------
            self.F1List_mean = []
            self.F1List_std = []
            # -----------------
            self.MIList_mean = []
            self.MIList_std = []
            # -----------------
            self.ALC_ACC_mean = []
            self.ALC_ACC_std = []
            # -----------------
            self.ALC_MZE_mean = []
            self.ALC_MZE_std = []
            # -----------------
            self.ALC_MAE_mean = []
            self.ALC_MAE_std = []
            # -----------------
            self.ALC_F1_mean = []
            self.ALC_F1_std = []
            # -----------------
            self.ALC_MI_mean = []
            self.ALC_MI_std = []
            # -----------------
            self.ALC_ACC_list = []
            self.ALC_MZE_list = []
            self.ALC_MAE_list = []
            self.ALC_F1_list = []
            self.ALC_MI_list = []
            # -----------------
            self.Redun_list = []#TODO
            self.Redun_mean = []#TODO
            self.Redun_std = []#TODO

    for name in name_list:
        print("########################{}".format(name))
        data_path = Path("D:\Chapter1\DataSet")
        partition_path = Path(r"D:\Chapter1\Partition")
        """--------------read the whole data--------------------"""
        read_data_path = data_path.joinpath(name + ".csv")
        data = np.array(pd.read_csv(read_data_path, header=None))
        X = np.asarray(data[:, :-1], np.float64)
        scaler = StandardScaler()
        X = scaler.fit_transform(X)
        y = data[:, -1]
        y -= y.min()
        dist_matrix = pairwise_distances(X=X, metric="euclidean")
        nClass = len(np.unique(y))
        nSample = len(y)
        Budget = 25 * nClass
        """--------read the partitions--------"""
        read_partition_path = str(partition_path.joinpath(name + ".xls"))
        book_partition = xlrd.open_workbook(read_partition_path)
        workbook = xlwt.Workbook()
        count = 0
        # --------------------------------------
        RESULT = results()
        STORE = stores()
        # --------------------------------------
        for SN in book_partition.sheet_names():
            print("================{}".format(SN))
            S_Time = time()
            train_ids = []
            test_ids = []
            labeled = []
            table_partition = book_partition.sheet_by_name(SN)
            for idx in table_partition.col_values(0):
                if isinstance(idx,float):
                    train_ids.append(int(idx))
            for idx in table_partition.col_values(1):
                if isinstance(idx,float):
                    test_ids.append(int(idx))
            for idx in table_partition.col_values(2):
                if isinstance(idx,float):
                    labeled.append(int(idx))
            X_train = X[train_ids]
            y_train = y[train_ids].astype(np.int32)
            X_test = X[test_ids]
            y_test = y[test_ids]

            model = AL_ALBL(X=X_train, y=y_train, labeled=labeled, budget=Budget, X_test=X_test, y_test=y_test)
            model.select()

            RESULT.ACCList.append(model.ACClist)
            RESULT.MZEList.append(model.MZElist)
            RESULT.MAEList.append(model.MAElist)
            RESULT.F1List.append(model.F1list)
            RESULT.MIList.append(model.MIlist)
            RESULT.ALC_ACC.append(model.ALC_ACC)
            RESULT.ALC_MZE.append(model.ALC_MZE)
            RESULT.ALC_MAE.append(model.ALC_MAE)
            RESULT.ALC_F1.append(model.ALC_F1)
            RESULT.ALC_MI.append(model.ALC_MI)
            RESULT.Redun.append(model.Redundancy) # TODO
            print("SN===",SN, "time:",time()-S_Time)

        STORE.ACCList_mean = np.mean(RESULT.ACCList, axis=0)
        STORE.ACCList_std = np.std(RESULT.ACCList, axis=0)
        STORE.MZEList_mean = np.mean(RESULT.MZEList, axis=0)
        STORE.MZEList_std = np.std(RESULT.MZEList, axis=0)
        STORE.MAEList_mean = np.mean(RESULT.MAEList, axis=0)
        STORE.MAEList_std = np.std(RESULT.MAEList, axis=0)
        STORE.F1List_mean = np.mean(RESULT.F1List, axis=0)
        STORE.F1List_std = np.std(RESULT.F1List, axis=0)
        STORE.MIList_mean = np.mean(RESULT.MIList, axis=0)
        STORE.MIList_std = np.std(RESULT.MIList, axis=0)
        STORE.ALC_ACC_mean = np.mean(RESULT.ALC_ACC)
        STORE.ALC_ACC_std = np.std(RESULT.ALC_ACC)
        STORE.ALC_MZE_mean = np.mean(RESULT.ALC_MZE)
        STORE.ALC_MZE_std = np.std(RESULT.ALC_MZE)
        STORE.ALC_MAE_mean = np.mean(RESULT.ALC_MAE)
        STORE.ALC_MAE_std = np.std(RESULT.ALC_MAE)
        STORE.ALC_F1_mean = np.mean(RESULT.ALC_F1)
        STORE.ALC_F1_std = np.std(RESULT.ALC_F1)
        STORE.ALC_MI_mean = np.mean(RESULT.ALC_MI)
        STORE.ALC_MI_std = np.std(RESULT.ALC_MI)
        STORE.ALC_ACC_list = RESULT.ALC_ACC
        STORE.ALC_MZE_list = RESULT.ALC_MZE
        STORE.ALC_MAE_list = RESULT.ALC_MAE
        STORE.ALC_F1_list = RESULT.ALC_F1
        STORE.ALC_MI_list = RESULT.ALC_MI
        STORE.Redun_list = RESULT.Redun # TODO
        STORE.Redun_mean = np.mean(RESULT.Redun)# TODO
        STORE.Redun_std = np.std(RESULT.Redun)# TODO

        sheet_names = ["ACC","MZE","MAE","F1","MI",
                       "ALC_ACC_list","ALC_MZE_list","ALC_MAE_list","ALC_F1_list","ALC_MI_list",
                       "ALC_ACC", "ALC_MZE","ALC_MAE", "ALC_F1", "ALC_MI",
                       "Redun_list","Redun"]
        workbook = xlwt.Workbook()

        for sn in sheet_names:
            print("sn::",sn)
            sheet = workbook.add_sheet(sn)
            n_col = len(STORE.MZEList_mean)
            if sn == "ACC":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.ACCList_mean[j - 1])
                    sheet.write(j,1,STORE.ACCList_std[j - 1])
            elif sn == "MZE":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.MZEList_mean[j - 1])
                    sheet.write(j,1,STORE.MZEList_std[j - 1])
            elif sn == "MAE":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.MAEList_mean[j - 1])
                    sheet.write(j,1,STORE.MAEList_std[j - 1])
            elif sn == "F1":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.F1List_mean[j - 1])
                    sheet.write(j,1,STORE.F1List_std[j - 1])
            elif sn == "MI":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.MIList_mean[j - 1])
                    sheet.write(j,1,STORE.MIList_std[j - 1])

            # ---------------------------------------------------
            elif sn == "ALC_ACC_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_ACC_list) + 1):
                    sheet.write(j,0,STORE.ALC_ACC_list[j - 1])
            elif sn == "ALC_MZE_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_MZE_list) + 1):
                    sheet.write(j,0,STORE.ALC_MZE_list[j - 1])
            elif sn == "ALC_MAE_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_MAE_list) + 1):
                    sheet.write(j,0,STORE.ALC_MAE_list[j - 1])
            elif sn == "ALC_F1_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_F1_list) + 1):
                    sheet.write(j,0,STORE.ALC_F1_list[j - 1])
            elif sn == "ALC_MI_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_MI_list) + 1):
                    sheet.write(j,0,STORE.ALC_MI_list[j - 1])

            # -----------------
            elif sn == "ALC_ACC":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_ACC_mean)
                sheet.write(2, 0, STORE.ALC_ACC_std)
            elif sn == "ALC_MZE":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_MZE_mean)
                sheet.write(2, 0, STORE.ALC_MZE_std)
            elif sn == "ALC_MAE":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_MAE_mean)
                sheet.write(2, 0, STORE.ALC_MAE_std)
            elif sn == "ALC_F1":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_F1_mean)
                sheet.write(2, 0, STORE.ALC_F1_std)
            elif sn == "ALC_MI":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_MI_mean)
                sheet.write(2, 0, STORE.ALC_MI_std)
            elif sn == "Redun_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.Redun_list) + 1):
                    sheet.write(j,0,STORE.Redun_list[j - 1])
            elif sn == "Redun":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.Redun_mean)
                sheet.write(2, 0, STORE.Redun_std)

        save_path = Path(r"D:\Chapter1\ALresult\ALBL")
        save_path = str(save_path.joinpath(name + ".xls"))
        workbook.save(save_path)
相关推荐
蓝莓味柯基1 小时前
Python3:文件操作
python
xiaoh_71 小时前
解决视频处理中的 HEVC 解码错误:Could not find ref with POC xxx【已解决】
python·ffmpeg·音视频
明月与玄武2 小时前
Python编程的真谛:超越语法,理解编程本质
python·编程语言
CodeCraft Studio2 小时前
Excel处理控件Aspose.Cells教程:使用 Python 在 Excel 中进行数据验
开发语言·python·excel
拾忆-eleven2 小时前
C语言实战:用Pygame打造高难度水果消消乐游戏
c语言·python·pygame
旦莫3 小时前
Python 教程:我们可以给 Python 文件起中文名吗?
开发语言·python
豌豆花下猫3 小时前
Python 潮流周刊#99:如何在生产环境中运行 Python?(摘要)
后端·python·ai
小杨4043 小时前
python入门系列二十(peewee)
人工智能·python·pycharm
弧襪3 小时前
FlaskRestfulAPI接口的初步认识
python·flaskrestfulapi
船长@Quant3 小时前
文档构建:Sphinx全面使用指南 — 进阶篇
python·markdown·sphinx·文档构建