论文复现:Active Learning by Learning

这篇文章说实在的,写的差强人意。

实质性内容是两个现有方法的拼凑!

讲的模模糊糊!对于复现代码不太友好!

撸一点,通读一遍 ,再撸一点,通读一遍~~~

python 复制代码
"""
注意:使用了训练集索引。
"""
import xlwt
import xlrd
import numpy as np
import pandas as pd
from pathlib import Path
from copy import deepcopy
from sklearn.preprocessing import StandardScaler
from time import time
from sklearn.metrics.pairwise import pairwise_distances
from numpy.linalg import inv
from sklearn.metrics import accuracy_score, mean_absolute_error, f1_score, mutual_info_score
from sklearn.neighbors import NearestNeighbors
np.seterr(divide='ignore',invalid='ignore')


class AL_ALBL():
    def __init__(self,X, y, labeled, budget, X_test, y_test):
        self.X = X
        self.y = y
        self.nSample, self.nDim = X.shape
        self.labels = sorted(np.unique(self.y))
        self.nClass = len(self.labels)
        self.M = np.array([[(i - j) ** 2 for i in range(self.nClass)] for j in range(self.nClass)])
        self.X_test = X_test
        self.y_test = y_test
        self.labeled = list(deepcopy(labeled))

        self.dist_matrix = pairwise_distances(X=self.X, metric='euclidean')
        self.K = -1.0 * self.dist_matrix  # 无标记样本池对应的核矩阵
        self.K_test_pool = -1.0 * pairwise_distances(X=self.X_test, Y=self.X, metric='euclidean')
        # -------------------------------------------------
        self.budgetLeft = deepcopy(budget)
        self.c = 0.01
        self.unlabeled = [i for i in range(self.nSample)]
        self.model_initial()
        # ------------------------------
        self._nstrategies = 2
        self._delta = 0.1
        self._w = np.ones(self._nstrategies)
        self._pmin = 1.0 / (self._nstrategies * 10.0)
        self._start = True
        self._aw = np.zeros(self.nSample)
        self._aw[self.labeled] = 1.0
        self._s_idx = None
        # -------------------------------
        self._pmin = 1.0 / (self._nstrategies * 10.0)
        self.PS = np.array([0.5,0.5])
        self.phi = np.zeros((2, self.nSample))
        self.Q = np.zeros(self.nSample)
        self.T = deepcopy(budget)
        self.hat_y_matrix = np.zeros((self.T, self.nSample))
        self.Wt = np.zeros((self.T, self.nSample))
        self.reward = 0.0
        self._nT = 1/ (self.nSample * self.T)



        # -------------------------------
        self.ACClist = []
        self.MZElist = []
        self.MAElist = []
        self.F1list = []
        self.MIlist = []
        self.ALC_ACC = 0.0
        self.ALC_MZE = 0.0
        self.ALC_MAE = 0.0
        self.ALC_F1 = 0.0
        self.ALC_MI = 0.0
        self.Redundancy = 0.0
        # -------------------------------

    def model_initial(self):
        self.T_labeled = self.M[self.y[self.labeled],:]
        self.K_labeled = self.K[np.ix_(self.labeled, self.labeled)]
        self.K_labeled_inv = inv(self.c * np.eye(len(self.labeled)) + self.K_labeled)
        self.Beta = self.K_labeled_inv @ self.T_labeled
        # -----------------------------
        for idx in self.labeled:
            self.unlabeled.remove(idx)
        return self

    def Block_Matrix_Inverse(self, A11_inv, A12, A21, A22):
        n = A11_inv.shape[0]
        m = A22.shape[0]
        M = np.zeros((m+n, m+n))
        B22 = inv(A22 - A21 @ A11_inv @ A12)
        B12 = -A11_inv @ A12 @ B22
        M[n:,n:] = B22
        M[:n,:n] = A11_inv - B12 @ (A21 @ A11_inv)
        M[:n,n:] = B12
        M[n:,:n] = -B22 @ A21 @ A11_inv
        return M

    def model_incremental_train(self, new_ids):
        A12 = self.K[np.ix_(self.labeled, new_ids)]
        A22 = self.K[np.ix_(new_ids, new_ids)] + self.c * np.eye(len(new_ids))
        K_bar_inv = self.Block_Matrix_Inverse(A11_inv=self.K_labeled_inv, A12=A12, A21=A12.T, A22=A22)
        T_bar = np.vstack((self.T_labeled, self.M[self.y[new_ids],:]))
        Beta_bar = K_bar_inv @ T_bar
        # --------------------------
        self.K_labeled_inv = K_bar_inv
        self.T_labeled = T_bar
        self.Beta = Beta_bar
        return self

    def tmp_incremental_train(self, tmp_idx):
        A12 = self.K[np.ix_(self.labeled, [tmp_idx])]
        A22 = self.K[np.ix_([tmp_idx], [tmp_idx])] + self.c * np.eye(1)
        K_bar_inv = self.Block_Matrix_Inverse(A11_inv=self.K_labeled_inv, A12=A12, A21=A12.T, A22=A22)
        return K_bar_inv

    def predict_proba(self, ids):
        K_test_labeled = self.K[np.ix_(ids, self.labeled)]
        output = K_test_labeled @ self.Beta
        predictions = np.linalg.norm(output[:, None] - self.M, axis=2, ord=1)
        predictions = -predictions
        predictions = np.exp(predictions)
        predictions_sum = np.sum(predictions, axis=1, keepdims=True)
        proba_matrix = predictions / predictions_sum
        return proba_matrix

    def predict(self, ids):
        K_test_labeled = self.K[np.ix_(ids, self.labeled)]
        output = K_test_labeled @ self.Beta
        predictions = np.argmin(np.linalg.norm(output[:, None] - self.M, axis=2, ord=1), axis=1)
        return predictions

    def get_EC(self, ids):
        K_test_labeled = self.K[np.ix_(ids, self.labeled)]
        output = K_test_labeled @ self.Beta
        ids_norm1 = np.linalg.norm(output[:, None] - self.M, axis=2, ord=1)
        predictions = -1.0 * deepcopy(ids_norm1)
        predictions = np.exp(predictions)
        predictions_sum = np.sum(predictions, axis=1, keepdims=True)
        proba_matrix = predictions / predictions_sum
        return np.sum(ids_norm1 * proba_matrix, axis=1)



    def evaluation(self):
        output = self.K_test_pool[:,self.labeled] @ self.Beta
        y_hat = np.argmin(np.linalg.norm(output[:, None] - self.M, axis=2, ord=1), axis=1)
        self.ACClist.append(accuracy_score(self.y_test, y_hat))
        self.MZElist.append(1-accuracy_score(self.y_test, y_hat))
        self.MAElist.append(mean_absolute_error(self.y_test, y_hat))
        self.F1list.append(f1_score(self.y_test, y_hat, average='macro'))
        self.MIlist.append(mutual_info_score(labels_true=self.y_test, labels_pred=y_hat))
        self.ALC_ACC += self.ACClist[-1]
        self.ALC_MZE += self.MZElist[-1]
        self.ALC_MAE += self.MAElist[-1]
        self.ALC_F1 += self.F1list[-1]
        self.ALC_MI += self.MIlist[-1]

    def SoftMax(self,value_list):
        exp_values = np.exp(value_list)
        sum_exp_values = np.sum(exp_values)
        return exp_values / sum_exp_values

    def select(self):
        self.evaluation()
        t = 0  #迭代次数
        while self.budgetLeft > 0:
            if not self._start:
                self._w[self._s_idx] *= np.exp(self._pmin / 2.0 * (self.reward + 1.0 / self.last_p * np.sqrt(np.log(self._nstrategies / self._delta) / self._nstrategies)))
            self._start = False
            W = self._w.sum()
            p = (1.0 - self._nstrategies * self._pmin) * self._w / W + self._pmin

            s_idx = np.random.choice(np.arange(self._nstrategies), p=p)
            tar_idx = None
            if s_idx == 0:
                print("Div")
                # ----------------Diversity sampling criterion
                dist_D_L = self.dist_matrix[np.ix_(np.arange(self.nSample), self.labeled)]
                Div = np.min(dist_D_L, axis=1)
                tar_idx = np.argmax(Div)
            elif s_idx == 1:
                print("Expected misclassification cost")
                # ----------------Least Confidence criterion
                EC = self.get_EC(ids=np.arange(self.nSample))
                tar_idx = np.argmax(EC)
                # proba_matrix = self.predict_proba(ids=np.arange(self.nSample))
                # proba_max = np.max(proba_matrix, axis=1)
                # tar_idx = np.argmin(proba_max)
            # ==========================================
            self.last_p = p[s_idx]
            # ==========================================
            if tar_idx in self.labeled:
                """不用更新模型"""
                """计算奖励"""
                hat_y = self.predict(ids=[tar_idx])
                if hat_y == self.y[tar_idx]:
                    self.reward += self._nT / p[s_idx]
            elif tar_idx not in self.labeled:
                """更新模型"""
                self.model_incremental_train(new_ids=[tar_idx])
                self.unlabeled.remove(tar_idx)
                self.labeled.append(tar_idx)
                self.budgetLeft -= 1
                self.evaluation()
                """计算奖励"""
                hat_y = self.predict(ids=[tar_idx])
                if hat_y == self.y[tar_idx]:
                    self.reward += self._nT / p[s_idx] # the IW-ACC

            # -----------------------------------------------
            t += 1  #迭代次数加一
        neigh = NearestNeighbors(n_neighbors=1)
        neigh.fit(X=self.X[self.labeled])
        self.Redundancy = (1/np.mean(neigh.kneighbors()[0].flatten()))

if __name__ == '__main__':

    # name_list = ["Balance-scale","Toy","Cleveland","Knowledge","Glass",
    #              "Melanoma","Housing-5bin","Housing-10bin","Car"]
    name_list = ["Student","Balance-scale","Newthyroid","CTGs","Knowledge","Car","Nursery",
                 "Toy","Melanoma","Eucalyptus","Glass","Obesity1","stock-10bin","Computer-10bin"]

    class results():
        def __init__(self):
            self.ACCList = []
            self.MZEList = []
            self.MAEList = []
            self.F1List = []
            self.MIList = []
            self.ALC_ACC = []
            self.ALC_MZE = []
            self.ALC_MAE = []
            self.ALC_F1 = []
            self.ALC_MI = []
            self.Redun = []

    class stores():
        def __init__(self):
            self.num_labeled_mean = []
            self.num_labeled_std = []
            #-----------------------
            self.ACCList_mean = []
            self.ACCList_std = []
            #-----------------------
            self.MZEList_mean = []
            self.MZEList_std = []
            # -----------------
            self.MAEList_mean = []
            self.MAEList_std = []
            # -----------------
            self.F1List_mean = []
            self.F1List_std = []
            # -----------------
            self.MIList_mean = []
            self.MIList_std = []
            # -----------------
            self.ALC_ACC_mean = []
            self.ALC_ACC_std = []
            # -----------------
            self.ALC_MZE_mean = []
            self.ALC_MZE_std = []
            # -----------------
            self.ALC_MAE_mean = []
            self.ALC_MAE_std = []
            # -----------------
            self.ALC_F1_mean = []
            self.ALC_F1_std = []
            # -----------------
            self.ALC_MI_mean = []
            self.ALC_MI_std = []
            # -----------------
            self.ALC_ACC_list = []
            self.ALC_MZE_list = []
            self.ALC_MAE_list = []
            self.ALC_F1_list = []
            self.ALC_MI_list = []
            # -----------------
            self.Redun_list = []#TODO
            self.Redun_mean = []#TODO
            self.Redun_std = []#TODO

    for name in name_list:
        print("########################{}".format(name))
        data_path = Path("D:\Chapter1\DataSet")
        partition_path = Path(r"D:\Chapter1\Partition")
        """--------------read the whole data--------------------"""
        read_data_path = data_path.joinpath(name + ".csv")
        data = np.array(pd.read_csv(read_data_path, header=None))
        X = np.asarray(data[:, :-1], np.float64)
        scaler = StandardScaler()
        X = scaler.fit_transform(X)
        y = data[:, -1]
        y -= y.min()
        dist_matrix = pairwise_distances(X=X, metric="euclidean")
        nClass = len(np.unique(y))
        nSample = len(y)
        Budget = 25 * nClass
        """--------read the partitions--------"""
        read_partition_path = str(partition_path.joinpath(name + ".xls"))
        book_partition = xlrd.open_workbook(read_partition_path)
        workbook = xlwt.Workbook()
        count = 0
        # --------------------------------------
        RESULT = results()
        STORE = stores()
        # --------------------------------------
        for SN in book_partition.sheet_names():
            print("================{}".format(SN))
            S_Time = time()
            train_ids = []
            test_ids = []
            labeled = []
            table_partition = book_partition.sheet_by_name(SN)
            for idx in table_partition.col_values(0):
                if isinstance(idx,float):
                    train_ids.append(int(idx))
            for idx in table_partition.col_values(1):
                if isinstance(idx,float):
                    test_ids.append(int(idx))
            for idx in table_partition.col_values(2):
                if isinstance(idx,float):
                    labeled.append(int(idx))
            X_train = X[train_ids]
            y_train = y[train_ids].astype(np.int32)
            X_test = X[test_ids]
            y_test = y[test_ids]

            model = AL_ALBL(X=X_train, y=y_train, labeled=labeled, budget=Budget, X_test=X_test, y_test=y_test)
            model.select()

            RESULT.ACCList.append(model.ACClist)
            RESULT.MZEList.append(model.MZElist)
            RESULT.MAEList.append(model.MAElist)
            RESULT.F1List.append(model.F1list)
            RESULT.MIList.append(model.MIlist)
            RESULT.ALC_ACC.append(model.ALC_ACC)
            RESULT.ALC_MZE.append(model.ALC_MZE)
            RESULT.ALC_MAE.append(model.ALC_MAE)
            RESULT.ALC_F1.append(model.ALC_F1)
            RESULT.ALC_MI.append(model.ALC_MI)
            RESULT.Redun.append(model.Redundancy) # TODO
            print("SN===",SN, "time:",time()-S_Time)

        STORE.ACCList_mean = np.mean(RESULT.ACCList, axis=0)
        STORE.ACCList_std = np.std(RESULT.ACCList, axis=0)
        STORE.MZEList_mean = np.mean(RESULT.MZEList, axis=0)
        STORE.MZEList_std = np.std(RESULT.MZEList, axis=0)
        STORE.MAEList_mean = np.mean(RESULT.MAEList, axis=0)
        STORE.MAEList_std = np.std(RESULT.MAEList, axis=0)
        STORE.F1List_mean = np.mean(RESULT.F1List, axis=0)
        STORE.F1List_std = np.std(RESULT.F1List, axis=0)
        STORE.MIList_mean = np.mean(RESULT.MIList, axis=0)
        STORE.MIList_std = np.std(RESULT.MIList, axis=0)
        STORE.ALC_ACC_mean = np.mean(RESULT.ALC_ACC)
        STORE.ALC_ACC_std = np.std(RESULT.ALC_ACC)
        STORE.ALC_MZE_mean = np.mean(RESULT.ALC_MZE)
        STORE.ALC_MZE_std = np.std(RESULT.ALC_MZE)
        STORE.ALC_MAE_mean = np.mean(RESULT.ALC_MAE)
        STORE.ALC_MAE_std = np.std(RESULT.ALC_MAE)
        STORE.ALC_F1_mean = np.mean(RESULT.ALC_F1)
        STORE.ALC_F1_std = np.std(RESULT.ALC_F1)
        STORE.ALC_MI_mean = np.mean(RESULT.ALC_MI)
        STORE.ALC_MI_std = np.std(RESULT.ALC_MI)
        STORE.ALC_ACC_list = RESULT.ALC_ACC
        STORE.ALC_MZE_list = RESULT.ALC_MZE
        STORE.ALC_MAE_list = RESULT.ALC_MAE
        STORE.ALC_F1_list = RESULT.ALC_F1
        STORE.ALC_MI_list = RESULT.ALC_MI
        STORE.Redun_list = RESULT.Redun # TODO
        STORE.Redun_mean = np.mean(RESULT.Redun)# TODO
        STORE.Redun_std = np.std(RESULT.Redun)# TODO

        sheet_names = ["ACC","MZE","MAE","F1","MI",
                       "ALC_ACC_list","ALC_MZE_list","ALC_MAE_list","ALC_F1_list","ALC_MI_list",
                       "ALC_ACC", "ALC_MZE","ALC_MAE", "ALC_F1", "ALC_MI",
                       "Redun_list","Redun"]
        workbook = xlwt.Workbook()

        for sn in sheet_names:
            print("sn::",sn)
            sheet = workbook.add_sheet(sn)
            n_col = len(STORE.MZEList_mean)
            if sn == "ACC":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.ACCList_mean[j - 1])
                    sheet.write(j,1,STORE.ACCList_std[j - 1])
            elif sn == "MZE":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.MZEList_mean[j - 1])
                    sheet.write(j,1,STORE.MZEList_std[j - 1])
            elif sn == "MAE":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.MAEList_mean[j - 1])
                    sheet.write(j,1,STORE.MAEList_std[j - 1])
            elif sn == "F1":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.F1List_mean[j - 1])
                    sheet.write(j,1,STORE.F1List_std[j - 1])
            elif sn == "MI":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.MIList_mean[j - 1])
                    sheet.write(j,1,STORE.MIList_std[j - 1])

            # ---------------------------------------------------
            elif sn == "ALC_ACC_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_ACC_list) + 1):
                    sheet.write(j,0,STORE.ALC_ACC_list[j - 1])
            elif sn == "ALC_MZE_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_MZE_list) + 1):
                    sheet.write(j,0,STORE.ALC_MZE_list[j - 1])
            elif sn == "ALC_MAE_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_MAE_list) + 1):
                    sheet.write(j,0,STORE.ALC_MAE_list[j - 1])
            elif sn == "ALC_F1_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_F1_list) + 1):
                    sheet.write(j,0,STORE.ALC_F1_list[j - 1])
            elif sn == "ALC_MI_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_MI_list) + 1):
                    sheet.write(j,0,STORE.ALC_MI_list[j - 1])

            # -----------------
            elif sn == "ALC_ACC":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_ACC_mean)
                sheet.write(2, 0, STORE.ALC_ACC_std)
            elif sn == "ALC_MZE":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_MZE_mean)
                sheet.write(2, 0, STORE.ALC_MZE_std)
            elif sn == "ALC_MAE":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_MAE_mean)
                sheet.write(2, 0, STORE.ALC_MAE_std)
            elif sn == "ALC_F1":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_F1_mean)
                sheet.write(2, 0, STORE.ALC_F1_std)
            elif sn == "ALC_MI":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_MI_mean)
                sheet.write(2, 0, STORE.ALC_MI_std)
            elif sn == "Redun_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.Redun_list) + 1):
                    sheet.write(j,0,STORE.Redun_list[j - 1])
            elif sn == "Redun":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.Redun_mean)
                sheet.write(2, 0, STORE.Redun_std)

        save_path = Path(r"D:\Chapter1\ALresult\ALBL")
        save_path = str(save_path.joinpath(name + ".xls"))
        workbook.save(save_path)
相关推荐
闲人编程3 小时前
Python在网络安全中的应用:编写一个简单的端口扫描器
网络·python·web安全·硬件·端口·codecapsule·扫描器
Mr_Xuhhh6 小时前
GUI自动化测试--自动化测试的意义和应用场景
python·集成测试
2301_764441336 小时前
水星热演化核幔耦合数值模拟
python·算法·数学建模
循环过三天6 小时前
3.4、Python-集合
开发语言·笔记·python·学习·算法
Q_Q5110082856 小时前
python+django/flask的眼科患者随访管理系统 AI智能模型
spring boot·python·django·flask·node.js·php
SunnyDays10118 小时前
如何使用Python高效转换Excel到HTML
python·excel转html
Q_Q5110082858 小时前
python+django/flask的在线学习系统的设计与实现 积分兑换礼物
spring boot·python·django·flask·node.js·php
Q_Q5110082859 小时前
python+django/flask的车辆尾气检测排放系统-可视化大屏展示
spring boot·python·django·flask·node.js·php
汤姆yu9 小时前
2026版基于python大数据的旅游可视化及推荐系统
python·旅游·大数据旅游
angleoldhen10 小时前
简单的智能数据分析程序
python·信息可视化·数据分析