论文复现:Active Learning by Learning

这篇文章说实在的,写的差强人意。

实质性内容是两个现有方法的拼凑!

讲的模模糊糊!对于复现代码不太友好!

撸一点,通读一遍 ,再撸一点,通读一遍~~~

python 复制代码
"""
注意:使用了训练集索引。
"""
import xlwt
import xlrd
import numpy as np
import pandas as pd
from pathlib import Path
from copy import deepcopy
from sklearn.preprocessing import StandardScaler
from time import time
from sklearn.metrics.pairwise import pairwise_distances
from numpy.linalg import inv
from sklearn.metrics import accuracy_score, mean_absolute_error, f1_score, mutual_info_score
from sklearn.neighbors import NearestNeighbors
np.seterr(divide='ignore',invalid='ignore')


class AL_ALBL():
    def __init__(self,X, y, labeled, budget, X_test, y_test):
        self.X = X
        self.y = y
        self.nSample, self.nDim = X.shape
        self.labels = sorted(np.unique(self.y))
        self.nClass = len(self.labels)
        self.M = np.array([[(i - j) ** 2 for i in range(self.nClass)] for j in range(self.nClass)])
        self.X_test = X_test
        self.y_test = y_test
        self.labeled = list(deepcopy(labeled))

        self.dist_matrix = pairwise_distances(X=self.X, metric='euclidean')
        self.K = -1.0 * self.dist_matrix  # 无标记样本池对应的核矩阵
        self.K_test_pool = -1.0 * pairwise_distances(X=self.X_test, Y=self.X, metric='euclidean')
        # -------------------------------------------------
        self.budgetLeft = deepcopy(budget)
        self.c = 0.01
        self.unlabeled = [i for i in range(self.nSample)]
        self.model_initial()
        # ------------------------------
        self._nstrategies = 2
        self._delta = 0.1
        self._w = np.ones(self._nstrategies)
        self._pmin = 1.0 / (self._nstrategies * 10.0)
        self._start = True
        self._aw = np.zeros(self.nSample)
        self._aw[self.labeled] = 1.0
        self._s_idx = None
        # -------------------------------
        self._pmin = 1.0 / (self._nstrategies * 10.0)
        self.PS = np.array([0.5,0.5])
        self.phi = np.zeros((2, self.nSample))
        self.Q = np.zeros(self.nSample)
        self.T = deepcopy(budget)
        self.hat_y_matrix = np.zeros((self.T, self.nSample))
        self.Wt = np.zeros((self.T, self.nSample))
        self.reward = 0.0
        self._nT = 1/ (self.nSample * self.T)



        # -------------------------------
        self.ACClist = []
        self.MZElist = []
        self.MAElist = []
        self.F1list = []
        self.MIlist = []
        self.ALC_ACC = 0.0
        self.ALC_MZE = 0.0
        self.ALC_MAE = 0.0
        self.ALC_F1 = 0.0
        self.ALC_MI = 0.0
        self.Redundancy = 0.0
        # -------------------------------

    def model_initial(self):
        self.T_labeled = self.M[self.y[self.labeled],:]
        self.K_labeled = self.K[np.ix_(self.labeled, self.labeled)]
        self.K_labeled_inv = inv(self.c * np.eye(len(self.labeled)) + self.K_labeled)
        self.Beta = self.K_labeled_inv @ self.T_labeled
        # -----------------------------
        for idx in self.labeled:
            self.unlabeled.remove(idx)
        return self

    def Block_Matrix_Inverse(self, A11_inv, A12, A21, A22):
        n = A11_inv.shape[0]
        m = A22.shape[0]
        M = np.zeros((m+n, m+n))
        B22 = inv(A22 - A21 @ A11_inv @ A12)
        B12 = -A11_inv @ A12 @ B22
        M[n:,n:] = B22
        M[:n,:n] = A11_inv - B12 @ (A21 @ A11_inv)
        M[:n,n:] = B12
        M[n:,:n] = -B22 @ A21 @ A11_inv
        return M

    def model_incremental_train(self, new_ids):
        A12 = self.K[np.ix_(self.labeled, new_ids)]
        A22 = self.K[np.ix_(new_ids, new_ids)] + self.c * np.eye(len(new_ids))
        K_bar_inv = self.Block_Matrix_Inverse(A11_inv=self.K_labeled_inv, A12=A12, A21=A12.T, A22=A22)
        T_bar = np.vstack((self.T_labeled, self.M[self.y[new_ids],:]))
        Beta_bar = K_bar_inv @ T_bar
        # --------------------------
        self.K_labeled_inv = K_bar_inv
        self.T_labeled = T_bar
        self.Beta = Beta_bar
        return self

    def tmp_incremental_train(self, tmp_idx):
        A12 = self.K[np.ix_(self.labeled, [tmp_idx])]
        A22 = self.K[np.ix_([tmp_idx], [tmp_idx])] + self.c * np.eye(1)
        K_bar_inv = self.Block_Matrix_Inverse(A11_inv=self.K_labeled_inv, A12=A12, A21=A12.T, A22=A22)
        return K_bar_inv

    def predict_proba(self, ids):
        K_test_labeled = self.K[np.ix_(ids, self.labeled)]
        output = K_test_labeled @ self.Beta
        predictions = np.linalg.norm(output[:, None] - self.M, axis=2, ord=1)
        predictions = -predictions
        predictions = np.exp(predictions)
        predictions_sum = np.sum(predictions, axis=1, keepdims=True)
        proba_matrix = predictions / predictions_sum
        return proba_matrix

    def predict(self, ids):
        K_test_labeled = self.K[np.ix_(ids, self.labeled)]
        output = K_test_labeled @ self.Beta
        predictions = np.argmin(np.linalg.norm(output[:, None] - self.M, axis=2, ord=1), axis=1)
        return predictions

    def get_EC(self, ids):
        K_test_labeled = self.K[np.ix_(ids, self.labeled)]
        output = K_test_labeled @ self.Beta
        ids_norm1 = np.linalg.norm(output[:, None] - self.M, axis=2, ord=1)
        predictions = -1.0 * deepcopy(ids_norm1)
        predictions = np.exp(predictions)
        predictions_sum = np.sum(predictions, axis=1, keepdims=True)
        proba_matrix = predictions / predictions_sum
        return np.sum(ids_norm1 * proba_matrix, axis=1)



    def evaluation(self):
        output = self.K_test_pool[:,self.labeled] @ self.Beta
        y_hat = np.argmin(np.linalg.norm(output[:, None] - self.M, axis=2, ord=1), axis=1)
        self.ACClist.append(accuracy_score(self.y_test, y_hat))
        self.MZElist.append(1-accuracy_score(self.y_test, y_hat))
        self.MAElist.append(mean_absolute_error(self.y_test, y_hat))
        self.F1list.append(f1_score(self.y_test, y_hat, average='macro'))
        self.MIlist.append(mutual_info_score(labels_true=self.y_test, labels_pred=y_hat))
        self.ALC_ACC += self.ACClist[-1]
        self.ALC_MZE += self.MZElist[-1]
        self.ALC_MAE += self.MAElist[-1]
        self.ALC_F1 += self.F1list[-1]
        self.ALC_MI += self.MIlist[-1]

    def SoftMax(self,value_list):
        exp_values = np.exp(value_list)
        sum_exp_values = np.sum(exp_values)
        return exp_values / sum_exp_values

    def select(self):
        self.evaluation()
        t = 0  #迭代次数
        while self.budgetLeft > 0:
            if not self._start:
                self._w[self._s_idx] *= np.exp(self._pmin / 2.0 * (self.reward + 1.0 / self.last_p * np.sqrt(np.log(self._nstrategies / self._delta) / self._nstrategies)))
            self._start = False
            W = self._w.sum()
            p = (1.0 - self._nstrategies * self._pmin) * self._w / W + self._pmin

            s_idx = np.random.choice(np.arange(self._nstrategies), p=p)
            tar_idx = None
            if s_idx == 0:
                print("Div")
                # ----------------Diversity sampling criterion
                dist_D_L = self.dist_matrix[np.ix_(np.arange(self.nSample), self.labeled)]
                Div = np.min(dist_D_L, axis=1)
                tar_idx = np.argmax(Div)
            elif s_idx == 1:
                print("Expected misclassification cost")
                # ----------------Least Confidence criterion
                EC = self.get_EC(ids=np.arange(self.nSample))
                tar_idx = np.argmax(EC)
                # proba_matrix = self.predict_proba(ids=np.arange(self.nSample))
                # proba_max = np.max(proba_matrix, axis=1)
                # tar_idx = np.argmin(proba_max)
            # ==========================================
            self.last_p = p[s_idx]
            # ==========================================
            if tar_idx in self.labeled:
                """不用更新模型"""
                """计算奖励"""
                hat_y = self.predict(ids=[tar_idx])
                if hat_y == self.y[tar_idx]:
                    self.reward += self._nT / p[s_idx]
            elif tar_idx not in self.labeled:
                """更新模型"""
                self.model_incremental_train(new_ids=[tar_idx])
                self.unlabeled.remove(tar_idx)
                self.labeled.append(tar_idx)
                self.budgetLeft -= 1
                self.evaluation()
                """计算奖励"""
                hat_y = self.predict(ids=[tar_idx])
                if hat_y == self.y[tar_idx]:
                    self.reward += self._nT / p[s_idx] # the IW-ACC

            # -----------------------------------------------
            t += 1  #迭代次数加一
        neigh = NearestNeighbors(n_neighbors=1)
        neigh.fit(X=self.X[self.labeled])
        self.Redundancy = (1/np.mean(neigh.kneighbors()[0].flatten()))

if __name__ == '__main__':

    # name_list = ["Balance-scale","Toy","Cleveland","Knowledge","Glass",
    #              "Melanoma","Housing-5bin","Housing-10bin","Car"]
    name_list = ["Student","Balance-scale","Newthyroid","CTGs","Knowledge","Car","Nursery",
                 "Toy","Melanoma","Eucalyptus","Glass","Obesity1","stock-10bin","Computer-10bin"]

    class results():
        def __init__(self):
            self.ACCList = []
            self.MZEList = []
            self.MAEList = []
            self.F1List = []
            self.MIList = []
            self.ALC_ACC = []
            self.ALC_MZE = []
            self.ALC_MAE = []
            self.ALC_F1 = []
            self.ALC_MI = []
            self.Redun = []

    class stores():
        def __init__(self):
            self.num_labeled_mean = []
            self.num_labeled_std = []
            #-----------------------
            self.ACCList_mean = []
            self.ACCList_std = []
            #-----------------------
            self.MZEList_mean = []
            self.MZEList_std = []
            # -----------------
            self.MAEList_mean = []
            self.MAEList_std = []
            # -----------------
            self.F1List_mean = []
            self.F1List_std = []
            # -----------------
            self.MIList_mean = []
            self.MIList_std = []
            # -----------------
            self.ALC_ACC_mean = []
            self.ALC_ACC_std = []
            # -----------------
            self.ALC_MZE_mean = []
            self.ALC_MZE_std = []
            # -----------------
            self.ALC_MAE_mean = []
            self.ALC_MAE_std = []
            # -----------------
            self.ALC_F1_mean = []
            self.ALC_F1_std = []
            # -----------------
            self.ALC_MI_mean = []
            self.ALC_MI_std = []
            # -----------------
            self.ALC_ACC_list = []
            self.ALC_MZE_list = []
            self.ALC_MAE_list = []
            self.ALC_F1_list = []
            self.ALC_MI_list = []
            # -----------------
            self.Redun_list = []#TODO
            self.Redun_mean = []#TODO
            self.Redun_std = []#TODO

    for name in name_list:
        print("########################{}".format(name))
        data_path = Path("D:\Chapter1\DataSet")
        partition_path = Path(r"D:\Chapter1\Partition")
        """--------------read the whole data--------------------"""
        read_data_path = data_path.joinpath(name + ".csv")
        data = np.array(pd.read_csv(read_data_path, header=None))
        X = np.asarray(data[:, :-1], np.float64)
        scaler = StandardScaler()
        X = scaler.fit_transform(X)
        y = data[:, -1]
        y -= y.min()
        dist_matrix = pairwise_distances(X=X, metric="euclidean")
        nClass = len(np.unique(y))
        nSample = len(y)
        Budget = 25 * nClass
        """--------read the partitions--------"""
        read_partition_path = str(partition_path.joinpath(name + ".xls"))
        book_partition = xlrd.open_workbook(read_partition_path)
        workbook = xlwt.Workbook()
        count = 0
        # --------------------------------------
        RESULT = results()
        STORE = stores()
        # --------------------------------------
        for SN in book_partition.sheet_names():
            print("================{}".format(SN))
            S_Time = time()
            train_ids = []
            test_ids = []
            labeled = []
            table_partition = book_partition.sheet_by_name(SN)
            for idx in table_partition.col_values(0):
                if isinstance(idx,float):
                    train_ids.append(int(idx))
            for idx in table_partition.col_values(1):
                if isinstance(idx,float):
                    test_ids.append(int(idx))
            for idx in table_partition.col_values(2):
                if isinstance(idx,float):
                    labeled.append(int(idx))
            X_train = X[train_ids]
            y_train = y[train_ids].astype(np.int32)
            X_test = X[test_ids]
            y_test = y[test_ids]

            model = AL_ALBL(X=X_train, y=y_train, labeled=labeled, budget=Budget, X_test=X_test, y_test=y_test)
            model.select()

            RESULT.ACCList.append(model.ACClist)
            RESULT.MZEList.append(model.MZElist)
            RESULT.MAEList.append(model.MAElist)
            RESULT.F1List.append(model.F1list)
            RESULT.MIList.append(model.MIlist)
            RESULT.ALC_ACC.append(model.ALC_ACC)
            RESULT.ALC_MZE.append(model.ALC_MZE)
            RESULT.ALC_MAE.append(model.ALC_MAE)
            RESULT.ALC_F1.append(model.ALC_F1)
            RESULT.ALC_MI.append(model.ALC_MI)
            RESULT.Redun.append(model.Redundancy) # TODO
            print("SN===",SN, "time:",time()-S_Time)

        STORE.ACCList_mean = np.mean(RESULT.ACCList, axis=0)
        STORE.ACCList_std = np.std(RESULT.ACCList, axis=0)
        STORE.MZEList_mean = np.mean(RESULT.MZEList, axis=0)
        STORE.MZEList_std = np.std(RESULT.MZEList, axis=0)
        STORE.MAEList_mean = np.mean(RESULT.MAEList, axis=0)
        STORE.MAEList_std = np.std(RESULT.MAEList, axis=0)
        STORE.F1List_mean = np.mean(RESULT.F1List, axis=0)
        STORE.F1List_std = np.std(RESULT.F1List, axis=0)
        STORE.MIList_mean = np.mean(RESULT.MIList, axis=0)
        STORE.MIList_std = np.std(RESULT.MIList, axis=0)
        STORE.ALC_ACC_mean = np.mean(RESULT.ALC_ACC)
        STORE.ALC_ACC_std = np.std(RESULT.ALC_ACC)
        STORE.ALC_MZE_mean = np.mean(RESULT.ALC_MZE)
        STORE.ALC_MZE_std = np.std(RESULT.ALC_MZE)
        STORE.ALC_MAE_mean = np.mean(RESULT.ALC_MAE)
        STORE.ALC_MAE_std = np.std(RESULT.ALC_MAE)
        STORE.ALC_F1_mean = np.mean(RESULT.ALC_F1)
        STORE.ALC_F1_std = np.std(RESULT.ALC_F1)
        STORE.ALC_MI_mean = np.mean(RESULT.ALC_MI)
        STORE.ALC_MI_std = np.std(RESULT.ALC_MI)
        STORE.ALC_ACC_list = RESULT.ALC_ACC
        STORE.ALC_MZE_list = RESULT.ALC_MZE
        STORE.ALC_MAE_list = RESULT.ALC_MAE
        STORE.ALC_F1_list = RESULT.ALC_F1
        STORE.ALC_MI_list = RESULT.ALC_MI
        STORE.Redun_list = RESULT.Redun # TODO
        STORE.Redun_mean = np.mean(RESULT.Redun)# TODO
        STORE.Redun_std = np.std(RESULT.Redun)# TODO

        sheet_names = ["ACC","MZE","MAE","F1","MI",
                       "ALC_ACC_list","ALC_MZE_list","ALC_MAE_list","ALC_F1_list","ALC_MI_list",
                       "ALC_ACC", "ALC_MZE","ALC_MAE", "ALC_F1", "ALC_MI",
                       "Redun_list","Redun"]
        workbook = xlwt.Workbook()

        for sn in sheet_names:
            print("sn::",sn)
            sheet = workbook.add_sheet(sn)
            n_col = len(STORE.MZEList_mean)
            if sn == "ACC":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.ACCList_mean[j - 1])
                    sheet.write(j,1,STORE.ACCList_std[j - 1])
            elif sn == "MZE":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.MZEList_mean[j - 1])
                    sheet.write(j,1,STORE.MZEList_std[j - 1])
            elif sn == "MAE":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.MAEList_mean[j - 1])
                    sheet.write(j,1,STORE.MAEList_std[j - 1])
            elif sn == "F1":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.F1List_mean[j - 1])
                    sheet.write(j,1,STORE.F1List_std[j - 1])
            elif sn == "MI":
                sheet.write(0, 0, sn)
                for j in range(1,n_col + 1):
                    sheet.write(j,0,STORE.MIList_mean[j - 1])
                    sheet.write(j,1,STORE.MIList_std[j - 1])

            # ---------------------------------------------------
            elif sn == "ALC_ACC_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_ACC_list) + 1):
                    sheet.write(j,0,STORE.ALC_ACC_list[j - 1])
            elif sn == "ALC_MZE_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_MZE_list) + 1):
                    sheet.write(j,0,STORE.ALC_MZE_list[j - 1])
            elif sn == "ALC_MAE_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_MAE_list) + 1):
                    sheet.write(j,0,STORE.ALC_MAE_list[j - 1])
            elif sn == "ALC_F1_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_F1_list) + 1):
                    sheet.write(j,0,STORE.ALC_F1_list[j - 1])
            elif sn == "ALC_MI_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.ALC_MI_list) + 1):
                    sheet.write(j,0,STORE.ALC_MI_list[j - 1])

            # -----------------
            elif sn == "ALC_ACC":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_ACC_mean)
                sheet.write(2, 0, STORE.ALC_ACC_std)
            elif sn == "ALC_MZE":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_MZE_mean)
                sheet.write(2, 0, STORE.ALC_MZE_std)
            elif sn == "ALC_MAE":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_MAE_mean)
                sheet.write(2, 0, STORE.ALC_MAE_std)
            elif sn == "ALC_F1":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_F1_mean)
                sheet.write(2, 0, STORE.ALC_F1_std)
            elif sn == "ALC_MI":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.ALC_MI_mean)
                sheet.write(2, 0, STORE.ALC_MI_std)
            elif sn == "Redun_list":
                sheet.write(0, 0, sn)
                for j in range(1,len(STORE.Redun_list) + 1):
                    sheet.write(j,0,STORE.Redun_list[j - 1])
            elif sn == "Redun":
                sheet.write(0, 0, sn)
                sheet.write(1, 0, STORE.Redun_mean)
                sheet.write(2, 0, STORE.Redun_std)

        save_path = Path(r"D:\Chapter1\ALresult\ALBL")
        save_path = str(save_path.joinpath(name + ".xls"))
        workbook.save(save_path)
相关推荐
新子y9 分钟前
【小白笔记】最大交换 (Maximum Swap)问题
笔记·python
程序员爱钓鱼1 小时前
Python编程实战 · 基础入门篇 | Python的缩进与代码块
后端·python
pr_note2 小时前
python|if判断语法对比
python
apocelipes5 小时前
golang unique包和字符串内部化
java·python·性能优化·golang
Geoking.5 小时前
NumPy zeros() 函数详解
python·numpy
Full Stack Developme5 小时前
java.text 包详解
java·开发语言·python
丁浩6666 小时前
Python机器学习---2.算法:逻辑回归
python·算法·机器学习
B站_计算机毕业设计之家7 小时前
计算机毕业设计:Python农业数据可视化分析系统 气象数据 农业生产 粮食数据 播种数据 爬虫 Django框架 天气数据 降水量(源码+文档)✅
大数据·爬虫·python·机器学习·信息可视化·课程设计·农业
Q_Q5110082857 小时前
python+uniapp基于微信小程序的旅游信息系统
spring boot·python·微信小程序·django·flask·uni-app·node.js
鄃鳕7 小时前
python迭代器解包【python】
开发语言·python