Hadoop3教程(二):HDFS的定义及概述

文章目录

(40)HDFS产生的背景和定义

随着实际生产环境中的数据越来越大,在一台服务器上无法存储下所有的数据,那么就要把数据分散到多台服务器的磁盘里存放。但是像这样做跨服务器的数据管理和维护是很难的,所以就迫切需要一种方式,来协调管理多台机器上的文件,这就是分布式文件管理系统。

HDFS就是最有名气的一种分布式文件管理系统,除此之外还有Google的GFS、淘宝自研的TFS等。

HDFS(Hadoop Distributed File System),就是分布式文件管理系统的一种,它本质上是一个文件系统。

它可以分布式的(在多台服务器节点上),以目录树的形式来存储和定位文件。

跟windows的NTFS文件系统是一样的。

HDFS的使用场景:适合一次写入,多次读出的场景。如果是需要频繁update的场景,其实是不适合HDFS。当然,只是不适合,不是不能用,完全可以用delete + 重新insert的方式,来实现update。

(41)HDFS的优缺点

HDFS的优点:

1) 高容错性

  • 自动保存多个副本(多个节点保存多个副本)
  • 副本丢失后,可以自动恢复

2) 适合处理大数据(只要资源够,处理上限很高)

  • 能够处理PB级别的数据;
  • 文件数量,百万级以上;

3) 可以构建在廉价的机器上,通过多副本机制,提高可靠性。

HDFS的缺点:

1) 低延时数据访问不合适,毫秒级存储数据,那是不可能的;

2)无法高效的存储大量的小文件:

  • 小文件会占用NameNode大量的内存来存储文件目录和块信息。每个文件都要在NameNode中创建一个保存元数据的地方(索引),这个大小是固定的,150byte,即使是小文件也是,所以大量小文件很容易就把NameNode占满。
  • 小文件过多的话,寻址时间会超过读取时间,违反HDFS的设计目标;

3) 不支持并发写入、文件随机修改

  • 一个文件只能有一个写,不允许多线程一起写;
  • 仅支持数据的追加,不支持随机修改;

(42)HDFS组成架构

HDFS里主要涉及4个组件:

  • NameNode
  • DataNode
  • Client
  • SecondaryNameNode

1)NameNode(NN),是HDFS里的Master,管理者,主要作用:

  • 管理HDFS的名称空间
  • 配置副本策略
  • 管理数据块(block)的映射信息(可以理解成目录),默认情况下,一个文件块是128M,一条目录信息(一个文件块的元数据)是150Byte;
  • 处理客户端读写请求;

2)DataNode,就是Slave。NameNode负责下命令,DataNode负责实际执行。

  • 存储实际的数据块;
  • 执行数据块的读写操作;

3)Client,就是客户端

  • 文件切分。文件在上传HDFS的时候,Client将文件切分成一个一个的块。这个块的大小,是由NameNode规定的,默认情况下,NN规定一个文件块是128M,企业中通常使用128M或者256M。
  • 与NameNode交互,获取文件位置信息;
  • 与DataNode交互,读写数据;
  • 可以提供一些命令来管理HDFS,比如NN格式化;
  • 可以提供命令来访问HDFS,执行增删改查;

4)Secondary NameNode,即2NN,并非是NameNode的热备份,当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务。所以实际工作中,一般不会用2NN来做容灾,而是采用NameNode的高可用模式。

  • 辅助NameNode,分担其工作量,比如定期合并Fsimage和Edits,并推送给NameNode;
  • 在紧急情况下,可以辅助恢复NameNode,但并不完全一致,NN始终保留有2NN所不知道的信息(非实时同步);

这里的紧急恢复,其实就是把2NN里保存的Fsimage和Edits复制到NameNode下,但毕竟有版本差。

(43)HDFS文件块大小(面试重点)

HDFS中的文件在物理上是分块(Block)储存的,块的大小可以通过参数dfs.blocksize来规定,可以在hdfs-default.xml中查看这个参数。

Hadoop1.x中块的默认大小是64M,而2.x和3.x版本中是128M。

这个blocksize代表着块的最大大小,如果数据只有1KB,那形成的块也只有1KB。

有几个时间的概念需要介绍下:

  • 寻址时间:即查找到目标block的时间;

  • 传输时间:数据拷贝或者写入的时间。

一般来讲,寻址时间为传输时间的1%时,整个过程是最佳状态。至于为什么,不知道,教程说是专家说的。

比如说,寻址时间为10ms,则传输时间为1s时,整个过程处于最佳状态。

传输时间主要依赖于磁盘的传输速率,目前普通磁盘的传输速率普遍为100MB/s,固态的话,可能能达到200M~300M。

所以这里有个讲究,磁盘的传输速率,对块大小的设置其实是有影响的,比如说这里,普通磁盘是100MB/s,为了实现1s左右的传输时间,blocksize一般设置为128M;如果是固态磁盘200M~300M,blocksize一般设置为256M。

据教程里介绍,128M和256M是目前企业中的主流块大小,一般中小型企业用128M,大型企业会采用256M。

那为什么块的大小,不能设置的太小,也不能设置的太大呢?

在源数据大小一定的情况下

  • 如果HDFS的块设置的太小:

会增加寻址时间,程序会花很长的时间在找块的开始位置上。

  • 如果块大小设置的太大:

极端点,比如说所有数据都在一个块里,定位块的时间是降低了,但是针对这块数据的磁盘IO会明显变大,极大影响数据处理的速度。因为这样子失去了并行处理的优势,改成串行处理了。

按我理解就是,以前可以多个进程读多个块,现在是只有一个块,只能一个进程,肯定很慢,hdfs的分块也失去了意义。

总结:HDFS块的大小主要取决于磁盘的传输速率。所以说磁盘IO才是制约速度的那块短板。

参考文献

  1. 【尚硅谷大数据Hadoop教程,hadoop3.x搭建到集群调优,百万播放】
相关推荐
大霸王龙41 分钟前
软件工程的软件生命周期通常分为以下主要阶段
大数据·人工智能·旅游
点赋科技1 小时前
沙市区举办资本市场赋能培训会 点赋科技分享智能消费新实践
大数据·人工智能
YSGZJJ2 小时前
股指期货技术分析与短线操作方法介绍
大数据·人工智能
Doker 多克2 小时前
Flink CDC —部署模式
大数据·flink
Guheyunyi2 小时前
监测预警系统重塑隧道安全新范式
大数据·运维·人工智能·科技·安全
Channing Lewis3 小时前
如果科技足够发达,是否还需要维持自然系统(例如生物多样性)中那种‘冗余’和‘多样性’,还是可以只保留最优解?
大数据·人工智能·科技
禺垣3 小时前
区块链技术概述
大数据·人工智能·分布式·物联网·去中心化·区块链
IvanCodes4 小时前
七、Sqoop Job:简化与自动化数据迁移任务及免密执行
大数据·数据库·hadoop·sqoop
冬至喵喵6 小时前
【hive】函数集锦:窗口函数、列转行、日期函数
大数据·数据仓库·hive·hadoop