目录
[一、DataX 概览](#一、DataX 概览)
[1.1 DataX 是什么](#1.1 DataX 是什么)
[1.2 DataX 3.0 概览](#1.2 DataX 3.0 概览)
[二、DataX 详解](#二、DataX 详解)
[2.1 DataX 3.0 框架设计](#2.1 DataX 3.0 框架设计)
[2.2 DataX 3.0 插件体系](#2.2 DataX 3.0 插件体系)
[2.3 DataX 3.0 核心架构](#2.3 DataX 3.0 核心架构)
[2.3.1 核心模块介绍](#2.3.1 核心模块介绍)
[2.3.2 DataX 调度流程](#2.3.2 DataX 调度流程)
[2.4 DataX 3.0 的六大核心优势](#2.4 DataX 3.0 的六大核心优势)
[2.4.1 可靠的数据质量监控](#2.4.1 可靠的数据质量监控)
[2.4.2 丰富的数据转换功能](#2.4.2 丰富的数据转换功能)
[2.4.3 精准的速度控制](#2.4.3 精准的速度控制)
[2.4.4 强劲的同步性能](#2.4.4 强劲的同步性能)
[2.4.5 健壮的容错机制](#2.4.5 健壮的容错机制)
[2.5.6 极简的使用体验](#2.5.6 极简的使用体验)
一、DataX 概览
用户在互联网上进行的所有的操作,都会留下很多的数据。有些是用户的行为数据,例如用户在什么时间点启动了 APP、什么时间点点击了某一个按钮、在某一个商品的详情页停留了 30 秒时间、收藏了某一篇文章、点赞了某一个评论等。这些数据会以服务器日志的形式记录下来。而有些数据是记录的业务数据,例如用户下单购买了什么商品等,这些数据一般会存储与关系型数据库中,例如 MySQL 或者 Oracle。
对于大数据开发来说,我们需要处理的数据来自于很多的渠道,有一些是服务器的日志文件,有一些是服务端的业务数据。我们要做的第一件事情,就是将这些数据导入到我们的大数据平台,然后再对其进行计算、处理,得出我们希望的结果。而在数据采集的时候,我们可以自己开发采集的程序、脚本来实现,也可以使用一些开源的第三方的程序。例如:使用 flume 可以实现将服务器日志文件采集到 HDFS 进行存储,而对于关系型数据库的数据的采集同步,我们可以采用 DataX 来实现。
1.1 DataX 是什么
DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现了包括 MySQL、SQLServer、Oracle、PostgreSQL、HDFS、Hive、HBase、OTS、ODPS 等各种异构数据源之间高效的数据同步功能。
DataX 本身作为数据同步框架,将不同数据源的同步抽象为从源头数据源读取数据的 Reader 插件,以及向目标端写入数据的 Writer 插件。理论上 DataX 框架可以支持任意数据源类型的数据同步工作。同时 DataX 插件体系作为一套生态系统,每接入一套新数据源时,这个新加入的数据源即可实现和现有的数据源互通。
1.2 DataX 3.0 概览
DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。
设计理念
为了解决异构数据源同步的问题,DataX 将复杂的网状的同步链路变成了星型的链路。DataX 作为中间传输载体,负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到 DataX,便能跟已有的数据源做到无缝数据同步。
当前使用现状
DataX 在阿里巴巴集团内被广泛使用,承担了所有大数据的离线同步业务,并已持续稳定运行了 7 年之久。目前每天完成同步 8W 多道作业,每日传输数据量超过 300TB。
GitHub主页地址: GitHub - alibaba/DataX: DataX是阿里云DataWorks数据集成的开源版本。
二、DataX 详解
2.1 DataX 3.0 框架设计
DataX 本身作为离线数据同步框架,采用 FrameWork+plugin 架构构建。将数据源读取和写入抽象成为 Reader/Writer 插件,纳入到整个同步框架中。
-
**Reader:**Reader 为数据采集模块,负责采集数据源的数据,将数据发送给 FrameWork。
-
**Writer:**Writer 为数据写入模块,负责不断从 FrameWork 取数据,并将数据写入到目的端。
-
FrameWork: FrameWork 用于连接 Reader 和 Writer,作为两者的数据传输通道,并处理缓冲、流控、并发、数据转换等核心技术问题。
2.2 DataX 3.0 插件体系
DataX 将数据源读取和写入抽象成为 Reader/Writer 插件,经过几年积累,DataX 目前已经有了比较全面的插件体系,主流的 RDBMS 数据库、NOSQL、大数据存储系统都已经接入。DataX 目前支持的数据源如下,详情请点击:DataX数据源参考指南:
类型 | 数据源 | Reader(读) | Writer(写) | 文档 |
---|---|---|---|---|
RDBMS 关系型数据库 | MySQL | √ | √ | 读 、写 |
Oracle | √ | √ | 读 、写 | |
OceanBase | √ | √ | 读 、写 | |
SQLServer | √ | √ | 读 、写 | |
PostgreSQL | √ | √ | 读 、写 | |
DRDS | √ | √ | 读 、写 | |
Kingbase | √ | √ | 读 、写 | |
通用RDBMS(支持所有关系型数据库) | √ | √ | 读 、写 | |
阿里云数仓数据存储 | ODPS | √ | √ | 读 、写 |
ADB | √ | 写 | ||
ADS | √ | 写 | ||
OSS | √ | √ | 读 、写 | |
OCS | √ | 写 | ||
Hologres | √ | 写 | ||
AnalyticDB For PostgreSQL | √ | 写 | ||
阿里云中间件 | datahub | √ | √ | 读 、写 |
SLS | √ | √ | 读 、写 | |
图数据库 | 阿里云 GDB | √ | √ | 读 、写 |
Neo4j | √ | 写 | ||
NoSQL数据存储 | OTS | √ | √ | 读 、写 |
Hbase0.94 | √ | √ | 读 、写 | |
Hbase1.1 | √ | √ | 读 、写 | |
Phoenix4.x | √ | √ | 读 、写 | |
Phoenix5.x | √ | √ | 读 、写 | |
MongoDB | √ | √ | 读 、写 | |
Cassandra | √ | √ | 读 、写 | |
数仓数据存储 | StarRocks | √ | √ | 读 、写 |
ApacheDoris | √ | 写 | ||
ClickHouse | √ | √ | 读 、写 | |
Databend | √ | 写 | ||
Hive | √ | √ | 读 、写 | |
kudu | √ | 写 | ||
selectdb | √ | 写 | ||
无结构化数据存储 | TxtFile | √ | √ | 读 、写 |
FTP | √ | √ | 读 、写 | |
HDFS | √ | √ | 读 、写 | |
Elasticsearch | √ | 写 | ||
时间序列数据库 | OpenTSDB | √ | 读 | |
TSDB | √ | √ | 读 、写 | |
TDengine | √ | √ | 读 、写 |
DataX FrameWork 提供了简单的接口与插件交互,提供简单的插件接入机制,只需要任意加上一种插件,就能无缝对接其他数据源。
2.3 DataX 3.0 核心架构
DataX 3.0 开源版本支持单机多线程模式完成同步作业运行,本小节按一个 DataX 作业生命周期的时序图,从整体架构设计,非常简要说明 DataX 各个模块相互关系。
2.3.1 核心模块介绍
-
DataX 完成单个数据同步的作业,我们称之为 Job。DataX 接受到一个 Job 之后,将启动一个进程来完成整个作业同步过程。DataX Job 模块是单个作业的中枢管理节点,承担了数据清洗、子任务切分(将单一作业计算转化为多个子 Task)、TaskGroup 管理等功能。
-
DataX Job 启动之后,会根据不同的源端切分策略,将 Job 切分成多个小的 Task(子任务),以便于并发执行。Task 便是 DataX 作业的最小单元,每一个 Task 都会负责一部分数据的同步工作。
-
切分多个 Task 之后,DataX Job 会调用 Scheduler 模块,根据配置的并发数据量,将拆分成的 Task 重新组合,组装成 TaskGroup(任务组)。每一个 TaskGroup 负责以一定的并发度运行完毕分配好的所有 Task,默认单个任务组的并发数量为 5。
-
每一个 Task 都由 TaskGroup 负责启动,Task 启动后,会固定启动 Reader->Channel->Writer 的线程来完成任务同步工作。
-
DataX 作业运行起来之后,Job 监控并等待多个 TaskGroup 模块任务完成,等待所有 TaskGroup 任务完成后,Job 成功退出。否则,异常退出,进程退出值非 0。
2.3.2 DataX 调度流程
举例来说,用户提交了一个 DataX 作业,并且配置了 20 个并发,目的是将一个 100 张分表的 mysql 数据同步到 ODPS 里面。DataX 的调度决策思路是:
-
DataX Job 根据分库分表切分成了 100 个 Task。
-
根据 20 个并发,DataX 计算共需要分配 4 个 TaskGroup。
-
4个 TaskGroup 平分切分好的 100 个Task,每一个 TaskGroup 负责以 5 个并发,共计运行 25 个Task。
理论上是每一个 TaskGroup 负责 25 个Task,但实际执行的过程中,每一个 Task 所需要处理的数据量是不同的,执行耗时也是不同的,所以有可能有的 TaskGroup 会分配的多一些,有些会分配的少一些。
2.4 DataX 3.0 的六大核心优势
2.4.1 可靠的数据质量监控
-
完美解决数据传输个别类型失真问题
DataX 旧版对于部分数据类型(比如时间戳)传输一直存在毫秒阶段等数据失真情况,新版本 DataX 3.0 已经做到支持所有的强数据类型,每一种插件都有自己的数据类型转换策略,让数据可以完整无损的传输到目的端。
-
提供作业全链路的流量、数据量运行时监控
DataX 3.0 运行过程中可以将作业本身状态、数据流量、数据速度、执行进度等信息进行全面的展示,让用户可以实时了解作业状态。并可在作业执行过程中智能判断源端和目的端的速度对比情况,给予用户更多性能排查信息。
-
提供脏数据探测
在大量数据的传输过程中,必定会由于各种原因导致很多数据传输报错(比如类型转换错误),这种数据 DataX 认为就是脏数据。DataX 目前可以实现脏数据精确过滤、识别、采集、展示,为用户提供多种的脏数据处理模式,让用户准确把控数据质量大关!
2.4.2 丰富的数据转换功能
DataX 作为一个服务于大数据的 ETL 工具,除了提供数据快照搬迁功能之外,还提供了丰富数据转换的功能,让数据在传输过程中可以轻松完成数据脱敏,补全,过滤等数据转换功能,另外还提供了自动 groovy 函数,让用户自定义转换函数。详情请看 DataX3 的 transformer 详细介绍。
2.4.3 精准的速度控制
还在为同步过程对在线存储压力影响而担心吗?新版本 DataX 3.0 提供了包括通道(并发)、记录流、字节流三种流控模式,可以随意控制你的作业速度,让你的作业在库可以承受的范围内达到最佳的同步速度。
"speed": {
"channel": 5,
"byte": 1048576,
"record": 10000
}
2.4.4 强劲的同步性能
DataX 3.0 每一种读插件都有一种或多种切分策略,都能将作业合理切分成多个 Task 并行执行,单机多线程执行模型可以让 DataX 速度随并发成线性增长。在源端和目的端性能都足够的情况下,单个作业一定可以打满网卡。另外,DataX 团队对所有的已经接入的插件都做了极致的性能优化,并且做了完整的性能测试。性能测试相关详情可以参照每单个数据源的详细介绍:DataX数据源指南
2.4.5 健壮的容错机制
DataX 作业是极易受外部因素的干扰,网络闪断、数据源不稳定等因素很容易让同步到一半的作业报错停止。因此稳定性是 DataX 的基本要求,在 DataX 3.0 的设计中,重点完善了框架和插件的稳定性。目前 DataX 3.0 可以做到线程级别、进程级别(暂时未开放)、作业级别多层次局部/全局的重试,保证用户的作业稳定运行。
-
线程内部重试
DataX 的核心插件都经过团队的全盘 review,不同的网络交互方式都有不同的重试策略。
-
线程级别重试
目前 DataX 已经可以实现 TaskFailover,针对于中间失败的 Task,DataX 框架可以做到整个 Task 级别的重新调度。
2.5.6 极简的使用体验
-
易用
下载即可用,支持 linux、windows、macOS,只需要短短几步骤就可以完成数据的传输。请点击:Quick Start
-
详细
DataX 在运行日志中打印了大量信息,其中包括传输速度,Reader、Writer 性能,进程 CPU,JVM 和 GC 情况等等。
-
传输过程中打印传输速度、进度等
-
传输过程中会打印进程相关的 CPU、JVM 等
-
在任务结束之后,打印总体运行情况
-
下一篇文章:大数据 DataX 详细安装教程-CSDN博客