Pytorch:cat、stack、squeeze、unsqueeze的用法

Pytorch:cat、stack、squeeze、unsqueeze的用法

torch.cat

在指定原有维度上链接传入的张量,所有传入的张量都必须是相同形状

torch.cat(tensors, dim=0, *, out=None) → Tensor

tensor:相同形状的tensor

dim:链接张量的维度,不能超过传入张量的维度

python 复制代码
x = torch.tensor([[0, 1, 2]], dtype= torch.float)
y = torch.tensor([[3, 4, 5]], dtype= torch.int)
print(x.shape, y.shape)
print("-"*50)
z = torch.cat((x, y), dim= 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.cat((x, y), dim= 1)
print(z)
print(z.shape)

torch.stack

在一个新的维度上链接张量,输入张量都必须是相同形状的

torch.stack(tensors, dim=0, *, out=None) → Tensor

tensor:相同形状的张量

dim:插入的张量维度,在0和输出张量维度(比输入张量维度多一个)之间

python 复制代码
x = torch.tensor([[0, 1, 2]])
y = torch.tensor([[3, 4, 5]])
print(x.shape, y.shape)
print("-"*50)
z = torch.stack((x, y), dim= 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.stack((x, y), dim= 1)
print(z)
print(z.shape)
print("-"*50)
z = torch.stack((x, y), dim= 2)
print(z)
print(z.shape)

torch.squeeze

压缩张量,去掉输入张量中大小为1的维度,例如:(Ax1xBxCx1)->(AxBxC)

torch.squeeze(input, dim=None) → Tensor

input (Tensor):输入张量

dim (int or tuple of ints, optional):只压缩某个维度,可以不指定,就是压缩所有大小为1的维度

python 复制代码
x = torch.tensor([[0, 1, 2]])
y = torch.rand(size= (1, 2, 1, 2, 1))
print(x.shape, y.shape)
print("-"*50)
z = torch.squeeze(x)
print(z)
print(z.shape)
print("-"*50)
z = torch.squeeze(y)
print(z)
print(z.shape)

torch.unsqueeze

在输入张量中指定位置插入一个大小为1的维度

torch.unsqueeze(input, dim) → Tensor

input (Tensor):输入张量

dim (int):插入维度的指定位置

python 复制代码
x = torch.randn(size= (2,3))
print(x.shape)
print("-"*50)
z = torch.unsqueeze(x, 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.unsqueeze(x, 1)
print(z)
print(z.shape)
相关推荐
阿杰学AI1 分钟前
AI核心知识56——大语言模型之ToT(简洁且通俗易懂版)
人工智能·ai·语言模型·提示工程·tot·pe·思维树
Baihai_IDP1 分钟前
你说的 CUDA 到底是哪个 CUDA?一文理清那些让人混淆的术语和版本号
人工智能·面试·llm
道19939 分钟前
PyTorch 高级进阶教程之深度实战实例(四)
人工智能·pytorch·python
hbqjzx15 分钟前
[工具] B站油管DY视频下载器 2025.12.18
python
wayuncn15 分钟前
我国首个虚拟数字人国标发布
人工智能·虚拟数字人·ai数字人·ai智能客服·ai智能体开发定制·ai群聊·ai定制
攻城狮7号17 分钟前
OpenAI开源0.4B参数Circuit-Sparsity模型:给AI大脑做次“极简手术”
人工智能·openai·开源模型·circuit·sparsity·0.4b参数模型
自己的九又四分之三站台18 分钟前
基于Python获取SonarQube的检查报告信息
开发语言·python
CES_Asia19 分钟前
政策x技术x市场:三位一体推动机器人产业爆发
大数据·人工智能·科技·机器人
彼岸花开了吗20 分钟前
构建AI智能体:五十七、LangGraph + Gradio:构建可视化AI工作流的趣味指南
人工智能·python
小苑同学21 分钟前
Masked Language Models是什么?
人工智能·语言模型·自然语言处理