Pytorch:cat、stack、squeeze、unsqueeze的用法

Pytorch:cat、stack、squeeze、unsqueeze的用法

torch.cat

在指定原有维度上链接传入的张量,所有传入的张量都必须是相同形状

torch.cat(tensors, dim=0, *, out=None) → Tensor

tensor:相同形状的tensor

dim:链接张量的维度,不能超过传入张量的维度

python 复制代码
x = torch.tensor([[0, 1, 2]], dtype= torch.float)
y = torch.tensor([[3, 4, 5]], dtype= torch.int)
print(x.shape, y.shape)
print("-"*50)
z = torch.cat((x, y), dim= 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.cat((x, y), dim= 1)
print(z)
print(z.shape)

torch.stack

在一个新的维度上链接张量,输入张量都必须是相同形状的

torch.stack(tensors, dim=0, *, out=None) → Tensor

tensor:相同形状的张量

dim:插入的张量维度,在0和输出张量维度(比输入张量维度多一个)之间

python 复制代码
x = torch.tensor([[0, 1, 2]])
y = torch.tensor([[3, 4, 5]])
print(x.shape, y.shape)
print("-"*50)
z = torch.stack((x, y), dim= 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.stack((x, y), dim= 1)
print(z)
print(z.shape)
print("-"*50)
z = torch.stack((x, y), dim= 2)
print(z)
print(z.shape)

torch.squeeze

压缩张量,去掉输入张量中大小为1的维度,例如:(Ax1xBxCx1)->(AxBxC)

torch.squeeze(input, dim=None) → Tensor

input (Tensor):输入张量

dim (int or tuple of ints, optional):只压缩某个维度,可以不指定,就是压缩所有大小为1的维度

python 复制代码
x = torch.tensor([[0, 1, 2]])
y = torch.rand(size= (1, 2, 1, 2, 1))
print(x.shape, y.shape)
print("-"*50)
z = torch.squeeze(x)
print(z)
print(z.shape)
print("-"*50)
z = torch.squeeze(y)
print(z)
print(z.shape)

torch.unsqueeze

在输入张量中指定位置插入一个大小为1的维度

torch.unsqueeze(input, dim) → Tensor

input (Tensor):输入张量

dim (int):插入维度的指定位置

python 复制代码
x = torch.randn(size= (2,3))
print(x.shape)
print("-"*50)
z = torch.unsqueeze(x, 0)
print(z)
print(z.shape)
print("-"*50)
z = torch.unsqueeze(x, 1)
print(z)
print(z.shape)
相关推荐
搂……住5 分钟前
第一次做逆向
python
卡尔曼的BD SLAMer10 分钟前
计算机视觉与深度学习 | Python实现EMD-SSA-VMD-LSTM-Attention时间序列预测(完整源码和数据)
python·深度学习·算法·cnn·lstm
深情不及里子18 分钟前
AI Agent | Coze 插件使用指南:从功能解析到实操步骤
人工智能·coze·插件配置
代码的乐趣26 分钟前
支持selenium的chrome driver更新到136.0.7103.94
chrome·python·selenium
2201_754918411 小时前
OpenCV 光流估计:从原理到实战
人工智能·opencv·计算机视觉
渴望技术的猿1 小时前
Windows 本地部署MinerU详细教程
java·windows·python·mineru
RockLiu@8051 小时前
自适应稀疏核卷积网络:一种高效灵活的图像处理方案
网络·图像处理·人工智能
落樱弥城1 小时前
角点特征:从传统算法到深度学习算法演进
人工智能·深度学习·算法
StarRocks_labs1 小时前
StarRocks MCP Server 开源发布:为 AI 应用提供强大分析中枢
数据库·starrocks·人工智能·开源·olap·mcp
Aliano2171 小时前
TestNGException ClassCastException SAXParserFactoryImpl是Java自带的Xerces解析器——解决办法
java·开发语言·python