数字图像处理 3图像增强;4图像分割2

近来复习《数字图像处理与机器视觉》网课。在这里分享一下学习笔记:

一 图像增强

特点: 有选择的增强,并衰减不需要的部分 可能和原图像不同

目的: 提升可理解性,提升可区分性

方法:空间域:灰度处理, 频域:滤波器

1 空间增强:

由已知推导未知:

1) 灰度变换:

阈值法 :分离前景和背景

反色法 :最大值-r;可以增强暗色区域的白色或灰色的细节

对数变换:拉高低灰度值的差异,压缩高灰度值的差异;

gamma变换:与对数变换相似,但变换形式更丰富;

2) 直方图均衡化与拉普拉斯锐化

直方图:横轴是灰度值,纵轴是灰度级

直方图均衡化:为了得到均匀分布的直方图

单调递增,变换后值域还是[0,L-1]

优点:提升对比度,速度快

缺点:过增强,不可逆

累计直方图中,概率相近的值会被处理为相同的值;且原始的概率密度分布不是线性递增分布.

拉普拉斯算子:图像的二阶微分,

拉普拉斯算子 会锐化

细节和边缘会更清晰

2 基于频域变换的图像增强:

通用步骤:

  1. 傅里叶变换; 2)与一个转移函数相乘; 3)傅里叶反变换 ;

(1)低通:平滑,高通:锐化;

(2)同态滤波:平滑+锐化

  • 压缩低频部分,增强高频部分
  • 消除不均匀光照,增强不均匀处细节
  • 将图像分为:照射分量与反射分量分开处理

3)高通滤波器:

  • 理想滤波器- 无法通过硬件实现;

转移函数:>D0 为1,小于等于D0为0

  • 巴特沃斯滤波器

转移函数比理想~平滑

  • 高斯滤波器

转移函数更陡峭,边缘保留效果更好

  • 梯形滤波器

转移函数0与1之间是斜线

二 图像分割:

分割是标记的特例,找出某一区域的共同特征.标记

边界(连续性 或区域(相似性

并行策略,串行策略

常用特征: 亮度\ 直方图,变换系数\边缘\纹理\关键点\

  • 基于阈值的分割:适用于直方图上有两个峰
  • 全局阈值: 迭代法,大津法(OTSU, 最优~ 最大熵,众数法,矩不变法
  • 自适应阈值
  • 带阈值法

1 基于区域的分割

区域生长法

区域分裂与合并

2 基于聚类的分割

空间相邻性

特征相似性

mean-shift 聚类分割算法

SLIC超像素聚类分割算法

这一章节没看懂

3 基于边界

关键是边界的提取, 技术包括边缘检测 边界跟踪,霍夫变换

不连续性是基础

一阶导数和二阶导数能检测斜率和曲率

一阶导数是 梯度

  • Robert算子, Prewitt &Sobel算子
  • 拉普拉斯算子
  • marr边缘检测算子 -高斯平滑加拉普拉斯算子
  • 抗噪声能力强,各向同性,图像模糊化
  • canny边缘检测算子:2D高斯模版滤波\求梯度\非极大值抑制\双阈值判别
  • 边界跟踪技术:探测法 梯度图法:边界法-边缘连接-霍夫变换-判断哪些点在一个直线上
相关推荐
Blossom.1189 分钟前
从“能写”到“能干活”:大模型工具调用(Function-Calling)的工程化落地指南
数据库·人工智能·python·深度学习·机器学习·计算机视觉·oracle
无妄无望41 分钟前
目标计数论文阅读(1)Class-Agnostic Counting
论文阅读·计算机视觉
小王爱学人工智能1 小时前
利用OpenCV进行指纹识别的案例
人工智能·opencv·计算机视觉
小王爱学人工智能2 小时前
OpenCV的特征检测
人工智能·opencv·计算机视觉
AndrewHZ3 小时前
【图像处理基石】图像压缩有哪些经典算法?
图像处理·计算机视觉·dct·cv·图像压缩·哈夫曼编码·rle
chxin140164 小时前
openCV3.0 C++ 学习笔记补充(自用 代码+注释)---持续更新 四(91-)
c++·opencv·计算机视觉
茜茜西西CeCe4 小时前
数字图像处理-巴特沃斯高通滤波、低通滤波
图像处理·opencv·计算机视觉·matlab·巴特沃斯高通滤波·巴特沃斯低通滤波
IT古董5 小时前
【第五章:计算机视觉】1.计算机视觉基础-(3)卷积神经网络核心层与架构分析:卷积层、池化层、归一化层、激活层
人工智能·计算机视觉·cnn
AI 嗯啦8 小时前
计算机视觉----图像投影(透视)变换(小案例)
人工智能·opencv·计算机视觉
不枯石10 小时前
Python实现点云法向量各种方向设定
python·计算机视觉·numpy