数字图像处理 3图像增强;4图像分割2

近来复习《数字图像处理与机器视觉》网课。在这里分享一下学习笔记:

一 图像增强

特点: 有选择的增强,并衰减不需要的部分 可能和原图像不同

目的: 提升可理解性,提升可区分性

方法:空间域:灰度处理, 频域:滤波器

1 空间增强:

由已知推导未知:

1) 灰度变换:

阈值法 :分离前景和背景

反色法 :最大值-r;可以增强暗色区域的白色或灰色的细节

对数变换:拉高低灰度值的差异,压缩高灰度值的差异;

gamma变换:与对数变换相似,但变换形式更丰富;

2) 直方图均衡化与拉普拉斯锐化

直方图:横轴是灰度值,纵轴是灰度级

直方图均衡化:为了得到均匀分布的直方图

单调递增,变换后值域还是[0,L-1]

优点:提升对比度,速度快

缺点:过增强,不可逆

累计直方图中,概率相近的值会被处理为相同的值;且原始的概率密度分布不是线性递增分布.

拉普拉斯算子:图像的二阶微分,

拉普拉斯算子 会锐化

细节和边缘会更清晰

2 基于频域变换的图像增强:

通用步骤:

  1. 傅里叶变换; 2)与一个转移函数相乘; 3)傅里叶反变换 ;

(1)低通:平滑,高通:锐化;

(2)同态滤波:平滑+锐化

  • 压缩低频部分,增强高频部分
  • 消除不均匀光照,增强不均匀处细节
  • 将图像分为:照射分量与反射分量分开处理

3)高通滤波器:

  • 理想滤波器- 无法通过硬件实现;

转移函数:>D0 为1,小于等于D0为0

  • 巴特沃斯滤波器

转移函数比理想~平滑

  • 高斯滤波器

转移函数更陡峭,边缘保留效果更好

  • 梯形滤波器

转移函数0与1之间是斜线

二 图像分割:

分割是标记的特例,找出某一区域的共同特征.标记

边界(连续性 或区域(相似性

并行策略,串行策略

常用特征: 亮度\ 直方图,变换系数\边缘\纹理\关键点\

  • 基于阈值的分割:适用于直方图上有两个峰
  • 全局阈值: 迭代法,大津法(OTSU, 最优~ 最大熵,众数法,矩不变法
  • 自适应阈值
  • 带阈值法

1 基于区域的分割

区域生长法

区域分裂与合并

2 基于聚类的分割

空间相邻性

特征相似性

mean-shift 聚类分割算法

SLIC超像素聚类分割算法

这一章节没看懂

3 基于边界

关键是边界的提取, 技术包括边缘检测 边界跟踪,霍夫变换

不连续性是基础

一阶导数和二阶导数能检测斜率和曲率

一阶导数是 梯度

  • Robert算子, Prewitt &Sobel算子
  • 拉普拉斯算子
  • marr边缘检测算子 -高斯平滑加拉普拉斯算子
  • 抗噪声能力强,各向同性,图像模糊化
  • canny边缘检测算子:2D高斯模版滤波\求梯度\非极大值抑制\双阈值判别
  • 边界跟踪技术:探测法 梯度图法:边界法-边缘连接-霍夫变换-判断哪些点在一个直线上
相关推荐
程序小旭10 分钟前
机器视觉基础—双目相机
计算机视觉·双目相机
AI极客菌2 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭2 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
老艾的AI世界5 小时前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
喵~来学编程啦8 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
凤枭香10 小时前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
蒙娜丽宁13 小时前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
好喜欢吃红柚子13 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
AI小杨14 小时前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测