四边形不等式

区间dp问题,状态转移方程:

dp[i][j] = min( dp[i][k] + dp[k+1][j] +w[i][j] ) //w[i][j]是从i到j的,一个定值 不随k改变,而且w的值只和i j有关,是它们的二元函数。

其中i<=k<=j ,初始值dp[i][i]已知。

含义:

dp[i][j]是状态i到j的最小花费。

dp[i][k] + dp[k+1][j]体现递推关系,k在i和j之间滑动,k有一个最优值使dp最小。

w[i][j]的性质很重要!w[i][j]是和题目有关的费用,如果满足四边形不等式和单调性,那么用DP计算dp时,就可以用四边形不等式进行优化。

看w函数,

单调性:【如果大区间包含小区间,那么大区间的w值也大于】

四边形不等式:

i,i',j,j' w[i,j]+w[i',j']<=w[i,j']+w[i',j] 交叉区间的和<=大区间和小区间的和

如果w满足单调性和四边形不等式的话,dp也满足。

dp[i][j]的最优分割点记为s[i][j],那么 s[i][j-1] <= s[i][j] <=s[i+1][j]

打表观察是否满足:

复制代码
#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
int w(int i,int j)
{
	//具体问题具体分析 
} 
int main()
{
	bool flag=true;
	//验证单调性 
	for(int l=1;l<=n;l++)
	for(int r=l+2;r<=n;r++)
	for(int i=l;i<=r;i++)
	for(int j=i;j<=r;j++)
		if(w(i,j)>w(l,r)) flag=false;
	//验证四边形不等式 
	for(int l=1;l<=n;l++)
	for(int r=l+2;r<=n;r++)
		if(w(l,r-1)+w(l+1,r)>w(l,r)+w(l+1,r-1)) flag=false;
	if(flag) //符合单调性以及四边形不等式
	else   //不符合单调性以及四边形不等式
	return 0; 
} 
相关推荐
追随者永远是胜利者4 小时前
(LeetCode-Hot100)253. 会议室 II
java·算法·leetcode·go
Jason_Honey24 小时前
【平安Agent算法岗面试-二面】
人工智能·算法·面试
程序员酥皮蛋4 小时前
hot 100 第三十五题 35.二叉树的中序遍历
数据结构·算法·leetcode
追随者永远是胜利者4 小时前
(LeetCode-Hot100)207. 课程表
java·算法·leetcode·go
仰泳的熊猫5 小时前
题目1535:蓝桥杯算法提高VIP-最小乘积(提高型)
数据结构·c++·算法·蓝桥杯
那起舞的日子6 小时前
动态规划-Dynamic Programing-DP
算法·动态规划
闻缺陷则喜何志丹6 小时前
【前后缀分解】P9255 [PA 2022] Podwyżki|普及+
数据结构·c++·算法·前后缀分解
每天吃饭的羊6 小时前
时间复杂度
数据结构·算法·排序算法
ValhallaCoder7 小时前
hot100-堆
数据结构·python·算法·
小小小米粒7 小时前
函数式接口 + Lambda = 方法逻辑的 “插拔式解耦”
开发语言·python·算法