批量处理图像模板

以下是一个Python模板,用于批量处理图像并将处理后的图像保存在另一个文件夹中。在此示例中,将使用Pillow库来处理图像,可以使用其他图像处理库,根据需要进行修改。

首先,确保已经安装了Pillow库,可以使用以下命令来安装:

bash 复制代码
pip install pillow -i https://pypi.tuna.tsinghua.edu.cn/simple

然后,使用以下模板来批量处理图像:

bash 复制代码
from PIL import Image
import os

def batch_process_images(input_folder, output_folder):
    # 确保输出文件夹存在,如果不存在则创建
    if not os.path.exists(output_folder):
        os.mkdir(output_folder)

    # 列出输入文件夹中的所有图像文件
    input_files = os.listdir(input_folder)

    # 针对每个输入文件进行处理
    for input_file in input_files:
        # 构建输入文件的完整路径
        input_file_path = os.path.join(input_folder, input_file)

        # 打开图像
        image = Image.open(input_file_path)

        # 在此处执行图像处理操作,例如调整大小、滤镜等
        # 这里只是一个示例,你可以根据需要进行修改
        # 这里将图像调整为150x150像素
        image = image.resize((150, 150))

        # 构建输出文件的完整路径
        output_file = os.path.join(output_folder, input_file)

        # 保存处理后的图像
        image.save(output_file)

        # 关闭图像文件
        image.close()

    print("图像处理完成,处理后的图像保存在", output_folder)

# 使用示例
input_folder = "input_images"
output_folder = "output_images"
batch_process_images(input_folder, output_folder)

可以将上述函数中的input_folder和output_folder参数替换为实际文件夹路径,然后调用batch_process_images(input_folder, output_folder)来处理图像。这个函数将在指定的输出文件夹中保存处理后的图像。

如果想使用OpenCV 来批量处理图像并将它们保存到另一个文件夹,可以使用以下示例代码。在这个示例中,将使用OpenCV来读取、处理和保存图像。

首先,请确保已经安装了OpenCV库,你可以使用以下命令来安装:

bash 复制代码
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

接下来,使用以下模板来批量处理图像并保存它们:

bash 复制代码
import cv2
import os

def batch_process_images(input_folder, output_folder):
    # 确保输出文件夹存在,如果不存在则创建
    if not os.path.exists(output_folder):
        os.mkdir(output_folder)

    # 列出输入文件夹中的所有图像文件
    input_files = os.listdir(input_folder)

    # 针对每个输入文件进行处理
    for input_file in input_files:
        # 构建输入文件的完整路径
        input_file_path = os.path.join(input_folder, input_file)

        # 使用OpenCV读取图像
        image = cv2.imread(input_file_path)

        # 在此处执行图像处理操作,例如调整大小、滤镜等
        # 这里只是一个示例,你可以根据需要进行修改
        # 这里将图像调整为150x150像素
        image = cv2.resize(image, (150, 150))

        # 构建输出文件的完整路径
        output_file = os.path.join(output_folder, input_file)

        # 使用OpenCV保存处理后的图像
        cv2.imwrite(output_file, image)

    print("图像处理完成,处理后的图像保存在", output_folder)

# 使用示例
input_folder = "input_images"
output_folder = "output_images"
batch_process_images(input_folder, output_folder)

可以将上述函数中的 input_folder 和 output_folder 参数替换为实际文件夹路径,然后调用 batch_process_images(input_folder, output_folder) 来处理图像。这个函数将在指定的输出文件夹中保存处理后的图像。

相关推荐
老歌老听老掉牙4 分钟前
旋量理论:刚体运动的几何描述与机器人应用
python·算法·机器学习·机器人·旋量
我是初九37 分钟前
【李沐-动手学深度学习v2】1.Colab学习环境配置
人工智能·python·学习·colab
失败又激情的man42 分钟前
python爬虫之数据存储
前端·数据库·python
一刀到底2111 小时前
Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合
python·django·fastapi
MoRanzhi12031 小时前
245. 2019年蓝桥杯国赛 - 数正方形(困难)- 递推
python·算法·蓝桥杯·国赛·递推·2019
Vertira1 小时前
如何在 PyTorch 中自定义卷积核参数(亲测,已解决)
人工智能·pytorch·python
幼稚园的山代王2 小时前
python3基础语法梳理(一)
开发语言·python
Gyoku Mint2 小时前
机器学习×第五卷:线性回归入门——她不再模仿,而开始试着理解你
人工智能·python·算法·机器学习·pycharm·回归·线性回归
Blossom.1182 小时前
基于机器学习的智能故障预测系统:构建与优化
人工智能·python·深度学习·神经网络·机器学习·分类·tensorflow