批量处理图像模板

以下是一个Python模板,用于批量处理图像并将处理后的图像保存在另一个文件夹中。在此示例中,将使用Pillow库来处理图像,可以使用其他图像处理库,根据需要进行修改。

首先,确保已经安装了Pillow库,可以使用以下命令来安装:

bash 复制代码
pip install pillow -i https://pypi.tuna.tsinghua.edu.cn/simple

然后,使用以下模板来批量处理图像:

bash 复制代码
from PIL import Image
import os

def batch_process_images(input_folder, output_folder):
    # 确保输出文件夹存在,如果不存在则创建
    if not os.path.exists(output_folder):
        os.mkdir(output_folder)

    # 列出输入文件夹中的所有图像文件
    input_files = os.listdir(input_folder)

    # 针对每个输入文件进行处理
    for input_file in input_files:
        # 构建输入文件的完整路径
        input_file_path = os.path.join(input_folder, input_file)

        # 打开图像
        image = Image.open(input_file_path)

        # 在此处执行图像处理操作,例如调整大小、滤镜等
        # 这里只是一个示例,你可以根据需要进行修改
        # 这里将图像调整为150x150像素
        image = image.resize((150, 150))

        # 构建输出文件的完整路径
        output_file = os.path.join(output_folder, input_file)

        # 保存处理后的图像
        image.save(output_file)

        # 关闭图像文件
        image.close()

    print("图像处理完成,处理后的图像保存在", output_folder)

# 使用示例
input_folder = "input_images"
output_folder = "output_images"
batch_process_images(input_folder, output_folder)

可以将上述函数中的input_folder和output_folder参数替换为实际文件夹路径,然后调用batch_process_images(input_folder, output_folder)来处理图像。这个函数将在指定的输出文件夹中保存处理后的图像。

如果想使用OpenCV 来批量处理图像并将它们保存到另一个文件夹,可以使用以下示例代码。在这个示例中,将使用OpenCV来读取、处理和保存图像。

首先,请确保已经安装了OpenCV库,你可以使用以下命令来安装:

bash 复制代码
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

接下来,使用以下模板来批量处理图像并保存它们:

bash 复制代码
import cv2
import os

def batch_process_images(input_folder, output_folder):
    # 确保输出文件夹存在,如果不存在则创建
    if not os.path.exists(output_folder):
        os.mkdir(output_folder)

    # 列出输入文件夹中的所有图像文件
    input_files = os.listdir(input_folder)

    # 针对每个输入文件进行处理
    for input_file in input_files:
        # 构建输入文件的完整路径
        input_file_path = os.path.join(input_folder, input_file)

        # 使用OpenCV读取图像
        image = cv2.imread(input_file_path)

        # 在此处执行图像处理操作,例如调整大小、滤镜等
        # 这里只是一个示例,你可以根据需要进行修改
        # 这里将图像调整为150x150像素
        image = cv2.resize(image, (150, 150))

        # 构建输出文件的完整路径
        output_file = os.path.join(output_folder, input_file)

        # 使用OpenCV保存处理后的图像
        cv2.imwrite(output_file, image)

    print("图像处理完成,处理后的图像保存在", output_folder)

# 使用示例
input_folder = "input_images"
output_folder = "output_images"
batch_process_images(input_folder, output_folder)

可以将上述函数中的 input_folder 和 output_folder 参数替换为实际文件夹路径,然后调用 batch_process_images(input_folder, output_folder) 来处理图像。这个函数将在指定的输出文件夹中保存处理后的图像。

相关推荐
WBluuue44 分钟前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
赴3351 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩1 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
RPA+AI十二工作室1 小时前
亚马逊店铺绩效巡检_影刀RPA源码解读
chrome·python·rpa·影刀
小艳加油2 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
学行库小秘4 小时前
ANN神经网络回归预测模型
人工智能·python·深度学习·神经网络·算法·机器学习·回归
Yn3124 小时前
在 Python 中使用 json 模块的完整指南
开发语言·python·json
秋难降4 小时前
线段树的深度解析(最长递增子序列类解题步骤)
数据结构·python·算法
猿榜4 小时前
Python基础-控制结构
python
Ratten4 小时前
【Python 实战】---- 实现一个可选择、配置操作的批量文件上传工具(三)上传类的实现
python