RK3568笔记三:部署ResNet50模型

若该文为原创文章,转载请注明原文出处。

通过ResNet50网络训练了识别10类车的模型并成功了转换成了onnx模型

具体训练过程可以参考文章AI项目十七:ResNet50训练部署教程-CSDN博客

这里部署使用rknn-toolkit2工具转换成RKNN模型并测试

rknn-toolkit2工具安装在前面文章有説明了,自行安装。

接下来测试并转成RKNN模型

一、onnx转成rknn模型

在rknn-toolkit2-master/examples/onnx目录下创建04_resnet50目录。

在04_resnet50目录下创建test.py文本

复制代码
import os
import urllib.request as request
import urllib
import traceback
import time
import sys
import numpy as np
import cv2
from rknn.api import RKNN

ONNX_MODEL = '10class_ResNet50.onnx'
RKNN_MODEL = '10class_ResNet50.rknn'


def show_outputs(outputs):
    output = outputs[0][0]
    output_sorted = sorted(output, reverse=True)
    top5_str = 'resnet50v2\n-----TOP 5-----\n'
    for i in range(5):
        value = output_sorted[i]
        index = np.where(output == value)
        for j in range(len(index)):
            if (i + j) >= 5:
                break
            if value > 0:
                topi = '{}: {}\n'.format(index[j], value)
            else:
                topi = '-1: 0.0\n'
            top5_str += topi
    print(top5_str)


def readable_speed(speed):
    speed_bytes = float(speed)
    speed_kbytes = speed_bytes / 1024
    if speed_kbytes > 1024:
        speed_mbytes = speed_kbytes / 1024
        if speed_mbytes > 1024:
            speed_gbytes = speed_mbytes / 1024
            return "{:.2f} GB/s".format(speed_gbytes)
        else:
            return "{:.2f} MB/s".format(speed_mbytes)
    else:
        return "{:.2f} KB/s".format(speed_kbytes)


def show_progress(blocknum, blocksize, totalsize):
    speed = (blocknum * blocksize) / (time.time() - start_time)
    speed_str = " Speed: {}".format(readable_speed(speed))
    recv_size = blocknum * blocksize

    f = sys.stdout
    progress = (recv_size / totalsize)
    progress_str = "{:.2f}%".format(progress * 100)
    n = round(progress * 50)
    s = ('#' * n).ljust(50, '-')
    f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)
    f.flush()
    f.write('\r\n')


if __name__ == '__main__':

    # Create RKNN object
    rknn = RKNN(verbose=True)

    # If resnet50v2 does not exist, download it.
    # Download address:
    # https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx
    if not os.path.exists(ONNX_MODEL):
        print('--> Download {}'.format(ONNX_MODEL))
        url = 'https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx'
        download_file = ONNX_MODEL
        try:
            start_time = time.time()
            urllib.request.urlretrieve(url, download_file, show_progress)
        except:
            print('Download {} failed.'.format(download_file))
            print(traceback.format_exc())
            exit(-1)
        print('done')

    # pre-process config
    print('--> config model')
    rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.82, 58.82, 58.82])
    print('done')

    # Load model
    print('--> Loading model')
    ret = rknn.load_onnx(model=ONNX_MODEL)
    if ret != 0:
        print('Load model failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')
    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
    if ret != 0:
        print('Build model failed!')
        exit(ret)
    print('done')

    # Export rknn model
    print('--> Export rknn model')
    ret = rknn.export_rknn(RKNN_MODEL)
    if ret != 0:
        print('Export rknn model failed!')
        exit(ret)
    print('done')

    # Set inputs
    img1 = cv2.imread('./test.jpg')
    img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
    img = cv2.resize(img1, (224, 224)) 
    # Init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime()
    if ret != 0:
        print('Init runtime environment failed!')
        exit(ret)
    print('done')

    # Inference
    print('--> Running model')
    outputs = rknn.inference(inputs=[img])
    np.save('./onnx_resnet50v2_0.npy', outputs[0])
    x = outputs[0]
    output = np.exp(x)/np.sum(np.exp(x))
    outputs = [output]
    show_outputs(outputs)
    print('done')

    rknn.release()

程序里有个需要注意的,resnet50模型使用的是224*224大小,所以在加载图片时,需要把图片缩放成224*224大小,否则会报下面的错误

E inference: The input(ndarray) shape (1, 768, 1024, 3) is wrong, expect 'nhwc' like (1, 224, 224, 3)!

运行

复制代码
python test.py

成功运行

如有侵权,或需要完整代码,请及时联系博主。

相关推荐
峰顶听歌的鲸鱼1 小时前
Kubernetes核心概述
运维·笔记·云原生·容器·kubernetes·云计算
代码游侠2 小时前
学习笔记——GPIO按键与中断系统
c语言·开发语言·arm开发·笔记·嵌入式硬件·学习·重构
浅念-2 小时前
C++第一课
开发语言·c++·经验分享·笔记·学习·算法
蓝田生玉1232 小时前
PLUTO论文阅读笔记
论文阅读·笔记
1379号监听员_3 小时前
PID学习笔记
笔记·学习
洁宝趴趴3 小时前
阅读笔记How to Set the Batch Size for Large-ScalePre-training?
人工智能·笔记·深度学习
claider3 小时前
Vim User Manual 阅读笔记 usr_20.txt Typing command-line commands quickly 快速键入命令行命令
笔记·编辑器·vim
叫码农就行3 小时前
spring cloud 笔记
java·笔记·spring cloud
Tina Tang3 小时前
Agentic AI学习笔记(2)
笔记·学习
zhangrelay3 小时前
ROS Noetic 与 Ubuntu 24.04
笔记·学习