【API篇】五、Flink分流合流API

文章目录

分流,很形象的一个词,就像一条大河,遇到岸边有分叉的,而形成了主流和测流。对于数据流也一样,不过是一个个水滴替换成了一条条数据。

将一条数据流拆分成完全独立的两条、甚至多条流。也就是基于一个DataStream,定义一些筛选条件,将符合条件的数据拣选出来放到对应的流里。

1、filter算子实现分流

java 复制代码
Demo案例:读取一个整数数字流,将数据流划分为奇数流和偶数流。

实现思路:针对同一个流,多次条用filter算子来拆分

java 复制代码
public class SplitStreamByFilter {

    public static void main(String[] args) throws Exception {

        
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
      
        SingleOutputStreamOperator<Integer> ds = env.socketTextStream("node01", 9527)
                                                    .map(Integer::valueOf);
                                                    
        //将ds 分为两个流 ,一个是奇数流,一个是偶数流
        //使用filter 过滤两次
        SingleOutputStreamOperator<Integer> ds1 = ds.filter(x -> x % 2 == 0);
        SingleOutputStreamOperator<Integer> ds2 = ds.filter(x -> x % 2 == 1);

        ds1.print("偶数");
        ds2.print("奇数");
        
        env.execute();
    }
}

以上实现的明显缺陷是,同一条数据,被多次处理。以上其实是将原始数据流stream复制两份,然后对每一份分别做筛选,冗余且低效。

2、分流:使用侧输出流

基本步骤为:

  • 使用process算子(Flink分层API中的最底层的处理函数)
  • 定义OutputTag对象,即输出标签对象,用于后面标记和提取侧流
  • 调用上下文ctx的.output()方法
  • 通过主流获取侧流
java 复制代码
案例:实现将WaterSensor按照Id类型进行分流

先定义下MapFunction的转换规则,用来将输入的数据转为自定义的WaterSensor对象:

java 复制代码
public class WaterSensorMapFunction implements MapFunction<String,WaterSensor>{
	
	@Override
	public WaterSensor map(String value) throws Exception {
	
		String[] strArr = value.split( regex: ",");
		
		//String组装对象
		return new WaterSensor(strArr[0],Long.value0f(strArr[1]),Integer.value0f(strArr[2]));
	}
}

使用侧流:

java 复制代码
public class SplitStreamByOutputTag {    
	public static void main(String[] args) throws Exception {
	
	        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
	
	        SingleOutputStreamOperator<WaterSensor> ds = env.socketTextStream("node01", 9527)
	              											.map(new WaterSensorMapFunction());
	
			//定义两个输出标签对象,用于后面标记和提取侧流
	        OutputTag<WaterSensor> s1 = new OutputTag<>("s1", Types.POJO(WaterSensor.class));
	        OutputTag<WaterSensor> s2 = new OutputTag<>("s2", Types.POJO(WaterSensor.class));
	        
	       //返回的都是主流
	        SingleOutputStreamOperator<WaterSensor> ds1 = ds.process(new ProcessFunction<WaterSensor, WaterSensor>()
	        {
	            @Override
	            //形参为别为:流中的一条数据、上下文对象、收集器
	            public void processElement(WaterSensor value, Context ctx, Collector<WaterSensor> out) throws Exception {
					
	                if ("s1".equals(value.getId())) {
	                    ctx.output(s1, value);
	                } else if ("s2".equals(value.getId())) {
	                    ctx.output(s2, value);
	                } else {
	                    //主流
	                    out.collect(value);
	                }
	
	            }
	        });
	
	        ds1.print("主流");
	        SideOutputDataStream<WaterSensor> s1DS = ds1.getSideOutput(s1);
	        SideOutputDataStream<WaterSensor> s2DS = ds1.getSideOutput(s2);
	
	        s1DS.printToErr("侧流s1");  //区别主流,让控制台输出标红
	        s2DS.printToErr("侧流s2");
	        
	        env.execute();
	 
	}
}

相关传参说明,首先是创建OutputTag对象时的传参:

  • 第一个参数为标签名,用于区分是哪一个侧流
  • 第二个是放入侧流中的数据的类型,且必须是Flink的类型(TypeInfomation,借助Types类)
  • OutputTag的泛型,是流到对应的侧流的数据类型

ProcessFunction接口的泛型中:

  • 第一个是输入的数据类型
  • 第二个是输出到主流上的数据类型

ctx.output方法的形参:

  • 第一个为outputTag对象
  • 第二个为数据,上面代码中传value即直接输出数据本身,也可输出处理后的数据,主流侧流数据类型不用一致

看下运行效果:

3、合流:union

将来源不同的多条流,合并成一条来联合处理,即合流。最简单的合流操作,就是直接将多条流合在一起,叫作流的联合(union)

union的条件是:

  • 每条流中要合并的数据类型必须相同(原始不同,可先借助map,在union)
  • 合并之后的新流会包括所有流中的元素,数据类型不变
java 复制代码
stream1.union(stream2, stream3, ...)  //可变长参数
java 复制代码
public class UnionExample {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);

        DataStreamSource<Integer> ds1 = env.fromElements(1, 2, 3);
        DataStreamSource<Integer> ds2 = env.fromElements(2, 2, 3);
        DataStreamSource<String> ds3 = env.fromElements("2", "2", "3");

        ds1.union(ds2,ds3.map(Integer::valueOf))
           .print();

        env.execute();
    }
}
//输出:
1
2
3
2
2
3
2
2
3

4、合流:connect

union合并流受限于数据类型,因此还有另一种合流操作:connect

java 复制代码
public class ConnectDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        
        env.setParallelism(1);
        
        //Integer流
        SingleOutputStreamOperator<Integer> source1 = env.socketTextStream("node01", 9527)
                										 .map(i -> Integer.parseInt(i));
		
		//String流
        DataStreamSource<String> source2 = env.socketTextStream("node01", 2795);

        /**
         * 总结: 使用 connect 合流
         * 1、一次只能连接 2条流
         * 2、流的数据类型可以不一样
         * 3、 连接后可以调用 map、flatmap、process来处理,但是各处理各的
         */
        ConnectedStreams<Integer, String> connect = source1.connect(source2);

        SingleOutputStreamOperator<String> result = connect.map(new CoMapFunction<Integer, String, String>() {
            @Override
            public String map1(Integer value) throws Exception {
                return "来源于原source1流:" + value.toString();
            }

            @Override
            public String map2(String value) throws Exception {
                return "来源于原source2流:" + value;
            }
        });

        result.print();

        env.execute();    
	}
}

使用 connect 合流的总结:

  • 一次只能连接 2条流,因为connect返回的是一个ConnectedStreams对象,不再是DataStreamSource或其子类了
  • 两条流中的数据类型可以不一样
  • 连接后可以调用 map、flatmap、process来处理,但是各处理各的

以map为例,其形参是一个CoMapFuntion接口类型,泛型则分别是流1的数据类型、流2的数据类型、合并及处理后输出的数据类型。两个map方法可以看出,虽然两个流合并成一个了,但处理数据时还是各玩各的。

  • .map1()就是对第一条流中数据的map操作
  • .map2()则是针对第二条流

connect 就类比被逼相亲后结婚,两个人看似成一家了,但实际上各自玩各自的。往大了举例就相当于一国两制。

5、connect案例

和connect以后的map传CoMapFunction一样,process算子也不再传ProcessFunction,而是CoProcessFunction,实现两个方法:

  • processElement1():针对第一条流
  • processElement2():针对第二条流

connect合并后得到的ConnectedStreams也可以直接调用.keyBy()进行按键分区,分区后返回的还是一个ConnectedStreams

java 复制代码
connectedStreams.keyBy(keySelector1, keySelector2);
//keySelector1和keySelector2,是两条流中各自的键选择器

ConnectedStreams进行keyBy操作,其实就是把两条流中key相同的数据放到了一起,然后针对来源的流再做各自处理

案例需求:连接两条流,输出能根据id匹配上的数据,即两个流里元组f0相同的数据(类似inner join效果)
java 复制代码
public class ConnectKeybyDemo {
    public static void main(String[] args) throws Exception {
    
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        
        env.setParallelism(2);
		
		//二元组流
        DataStreamSource<Tuple2<Integer, String>> source1 = env.fromElements(
                Tuple2.of(1, "a1"),
                Tuple2.of(1, "a2"),
                Tuple2.of(2, "b"),
                Tuple2.of(3, "c")
        );
        //三元组流
        DataStreamSource<Tuple3<Integer, String, Integer>> source2 = env.fromElements(
                Tuple3.of(1, "aa1", 1),
                Tuple3.of(1, "aa2", 2),
                Tuple3.of(2, "bb", 1),
                Tuple3.of(3, "cc", 1)
        );

        ConnectedStreams<Tuple2<Integer, String>, Tuple3<Integer, String, Integer>> connect = source1.connect(source2);

        // 多并行度下,需要根据 关联条件 进行keyby,才能保证key相同的数据到一起去,才能匹配上
        ConnectedStreams<Tuple2<Integer, String>, Tuple3<Integer, String, Integer>> connectKey = connect.keyBy(s1 -> s1.f0, s2 -> s2.f0);

        SingleOutputStreamOperator<String> result = connectKey.process(
                new CoProcessFunction<Tuple2<Integer, String>, Tuple3<Integer, String, Integer>, String>() {
                    // 定义 HashMap,缓存来过的数据,key=id,value=list<数据>
                    Map<Integer, List<Tuple2<Integer, String>>> s1Cache = new HashMap<>();
                    Map<Integer, List<Tuple3<Integer, String, Integer>>> s2Cache = new HashMap<>();

                    @Override
                    public void processElement1(Tuple2<Integer, String> value, Context ctx, Collector<String> out) throws Exception {
                        Integer id = value.f0;
                        // TODO 1.来过的s1数据,都存起来
                        if (!s1Cache.containsKey(id)) {
                            // 1.1 第一条数据,初始化 value的list,放入 hashmap
                            List<Tuple2<Integer, String>> s1Values = new ArrayList<>();
                            s1Values.add(value);
                            s1Cache.put(id, s1Values);
                        } else {
                            // 1.2 不是第一条,直接添加到 list中
                            s1Cache.get(id).add(value);
                        }

                        //TODO 2.根据id,查找s2的数据,只输出 匹配上 的数据
                        if (s2Cache.containsKey(id)) {
                            for (Tuple3<Integer, String, Integer> s2Element : s2Cache.get(id)) {
                                out.collect("s1:" + value + "<--------->s2:" + s2Element);
                            }
                        }
                    }

                    @Override
                    public void processElement2(Tuple3<Integer, String, Integer> value, Context ctx, Collector<String> out) throws Exception {
                        Integer id = value.f0;
                        // TODO 1.来过的s2数据,都存起来
                        if (!s2Cache.containsKey(id)) {
                            // 1.1 第一条数据,初始化 value的list,放入 hashmap
                            List<Tuple3<Integer, String, Integer>> s2Values = new ArrayList<>();
                            s2Values.add(value);
                            s2Cache.put(id, s2Values);
                        } else {
                            // 1.2 不是第一条,直接添加到 list中
                            s2Cache.get(id).add(value);
                        }

                        //TODO 2.根据id,查找s1的数据,只输出 匹配上 的数据
                        if (s1Cache.containsKey(id)) {
                            for (Tuple2<Integer, String> s1Element : s1Cache.get(id)) {
                                out.collect("s1:" + s1Element + "<--------->s2:" + value);
                            }
                        }
                    }
                });

        result.print();

        env.execute();
    }
}

运行效果:

相关推荐
lucky_syq2 小时前
Saprk和Flink的区别
大数据·flink
lucky_syq2 小时前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
小屁孩大帅-杨一凡7 小时前
Flink 简介和简单的demo
大数据·flink
天冬忘忧7 小时前
Flink调优----反压处理
大数据·flink
老周聊架构9 小时前
聊聊Flink:Flink的状态管理
大数据·flink
ssxueyi1 天前
如何查看flink错误信息
大数据·flink
core5122 天前
flink SQL实现mysql source sink
mysql·flink·jdbc·source·cdc·sink·mysql-cdc
天冬忘忧2 天前
Flink调优----资源配置调优与状态及Checkpoint调优
大数据·flink
Ekine2 天前
【Flink-scala】DataStream编程模型之状态编程
大数据·flink·scala
别这么骄傲4 天前
使用Flinkcdc 采集mysql数据
大数据·数据库·flink