Flink中基于时间的合流--双流联结(join)

Flink提供了两种基于时间的合流操作,分别是窗口联结(Window Join)和间隔联结(Interval Join)。

一、窗口联结(Window Join)

Flink为基于一段时间的双流合并提供了一个窗口联结算子。在定义的时间窗口中,通过两条流中共享的公共键(key)来进行两条流中的数据的匹配。

窗口联结在代码中的实现,首先需要调用DataStream的.join()方法来合并两条流,得到一个JoinedStreams;接着通过.where()和.equalTo()方法指定两条流中联结的key;然后通过.window()开窗口,并通过.apply()传入联结窗口函数进行处理计算。其调用形式如下所示:

上述代码中.where()的参数是键选择器(KeySelector),用来指定第一条流中的key;而.equalTo()传入的KeySelector则指定了第二条流中的key。两者相同的元素,如果在同一个窗口内,就可以进行匹配,如果不在同一个窗口内,即便是key相同也不会进行数据匹配。这里的.window()传入的就是窗口分配器,就是前几节讲的滚动窗口、滑动窗口、会话窗口。.apply()就是对两个流中匹配的数据进行处理的操作。

二、间隔联结(Interval Join)

在有些场景下,利用窗口联结会有些问题,就是我们要处理的时间间隔可能并不是固定的,这时就不应该应用滚动窗口或者滑动窗口来处理了。

间隔联结的原理就是针对一条流中的每一条数据,开辟出其时间戳前后的一段时间间隔,看这期间是否有来自另外一条流中的数据匹配。

间隔联结的具体定义方式是,我们给定两个时间点,分别叫做间隔的"上界"(upperBound)和"下界"(lowerBound);于是对于一条流中的任意一个数据元素a,就可以开辟这条数据的时间间隔[a.timestamp + lowerBound,a.timestamp + upperBound],然后根据这个时间间隔去另外一条流中找在这个时间间隔内并且有相同key的数据。其大致详情如下图:

对于迟于这个时间间隔的数据才到来的数据,由于其水位线可能已经高于这个时间间隔,那么它就不会再被纳入处理,这种数据就会被丢弃。如果想把丢弃的数据展示出来,可以采用侧输出的方式将数据输出到侧输出流中。

相关推荐
码上地球6 分钟前
大数据成矿预测系列(八) | 从定性到概率:逻辑回归——地质统计学派的“集大成者”
大数据·逻辑回归
拓端研究室7 分钟前
专题:2025中国医疗器械出海现状与趋势创新发展研究报告|附160+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能·pdf
zskj_zhyl1 小时前
科技向暖,银发无忧:十五五规划中智慧养老的温度革命
大数据·人工智能·科技·物联网·生活
muxue1782 小时前
Hadoop集群搭建(上):centos 7为例(已将将安装所需压缩包统一放在了/opt/software目录下)
大数据·hadoop·centos
阿里云大数据AI技术2 小时前
【跨国数仓迁移最佳实践11】基于 MaxCompute Resource & Quota策略优化实现资源管理性能与成本最优平衡
大数据
Elastic 中国社区官方博客3 小时前
Elasticsearch 的结构化文档配置 - 递归分块实践
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·jenkins
草明3 小时前
Elasticsearch 报错:index read-only / allow delete (api) 深度解析与解决方案
大数据·elasticsearch·jenkins
得帆云3 小时前
低代码高频实践场景系列之一——EHS系统
大数据·人工智能·物联网
yachuan_qiao4 小时前
专业的建筑设备监控管理系统选哪家
大数据·运维·python
TDengine (老段)4 小时前
TDengine 字符串函数 LIKE_IN_SET 用户手册
大数据·数据库·物联网·制造·时序数据库·tdengine·涛思数据