Flink概述

一、Flink是什么

Flink是一个框架和分布式计算引擎,用于对有界(批量)和无界(流式)数据流进行有状态的计算。

在这个概念中,说明了Flink既可以进行流式处理又可以进行批量处理。对于有界数据流的处理就是批量处理;对于无界数据流的处理就是流式处理。

有界数据流和无界数据流的区别就是两者的数据输入有无终止。无界数据流无终止,数据源源不断的输入;有界数据流的输入数据有终止。

其次,Flink还是有状态的计算。状态就是在流处理的过程中需要的额外数据(比如中间结果),Flink会将这个数据保存成一个'状态',然后在后续的数据处理过程中会更新该状态。而且这个'状态'信息会被Flink保存在本身任务的内存中,同时为了'状态'的可恢复,Flink也会将'状态'信息持久化到磁盘中去。其大致流程如下:

二、Flink的主要特点

(1)、高吞吐和低延迟:Flink每秒可以处理百万级别的数据,且是毫秒级延时。

(2)、结果的准确性。Flink提供了事件时间和处理时间两种语义。对于乱序的数据,Flink利用事件时间语义一样可以保证数据结果的一致性。比如:某一个数据发出时候的时间是23:59(事件时间)分,到达Flink被处理时的时间是第二天的0:01(处理时间)分,那么Flink会将这条数据按照前一天的事件时间来处理,从而保证这一天的数据处理结果是准确的。其实这个特点是要和Spark Streaming对比着看才能体会到,Spark Streaming只有处理时间语义,就是每个数据只会被标记被处理时候的时间,那如果就像是上面的例子一样,这条数据就不会被算作是前一天的数据,而是会被当做是第二天的数据来处理。

(3)、精确一次(exactly-once)的状态一致性保证。

(4)、高可用。Flink本身可以保证高可用,加上与K8s,YARN和Mesos的集成,再加上从故障中快速恢复和动态扩展的能力,Flink可以做到7*24小时运行,极少停机。

三、Flink和Spark Streaming的对比

从数据处理方式对比:Flink是流式处理;Spark Streaming是微批量处理。

从时间语义上对比:Flink有事件时间语义和处理时间语义;Spark Streaming只有处理时间语义。

从状态上来看:Flink是会在内存中存储状态的;Spark Streaming中不会在内存中存储状态,他一般要将中间结果存储在MySQL或者Redis中的。

从流式SQL中来说:Flink是支持使用Flink SQL来进行数据处理的;Spark中尽管有Spark SQL但是他并不是针对批量数据的数据处理,不是在Spark Streaming中使用的。

相关推荐
CDA数据分析师干货分享3 小时前
【CDA 新一级】学习笔记第1篇:数据分析的时代背景
大数据·笔记·学习·数据分析·cda证书·cda数据分析师
软件开发小陈3 小时前
“我店模式”:零售转型中的场景化突围
大数据
计算机毕业设计木哥4 小时前
基于大数据spark的医用消耗选品采集数据可视化分析系统【Hadoop、spark、python】
大数据·hadoop·python·信息可视化·spark·课程设计
xiao-xiang5 小时前
elasticsearch mapping和template解析(自动分词)!
大数据·elasticsearch·搜索引擎
sleetdream5 小时前
Flink DataStream 按分钟或日期统计数据量
大数据·flink
人大博士的交易之路6 小时前
今日行情明日机会——20250813
大数据·数据挖掘·数据分析·缠中说禅·涨停回马枪
Elastic 中国社区官方博客7 小时前
超越相似名称:Elasticsearch semantic text 如何在简洁、高效、集成方面超越 OpenSearch semantic 字段
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
Lx3529 小时前
MapReduce性能调优:从理论到实践的经验总结
大数据·hadoop·后端