全都不及格!斯坦福100页论文给大模型透明度排名,GPT-4仅排第三

试问百模大战的当下,谁家大模型的透明度最高?

(例如模型是如何构建的、如何工作、用户如何使用它们的相关信息。)

现在,这个问题终于有解了。

因为斯坦福大学HAI等研究机构最新共同发布了一项研究------

专门设计了一个名为基础模型透明度指标(The Foundation Model Transparency Index)的评分系统。

它从100个维度对国外10家主流的大模型做了排名,并在透明度这一层面上做了全面的评估。

结果可谓是大跌眼镜!

若是以60分作为及格线,那么"参赛"的大模型们可以说是全军覆没,没有一个及格的......

来感受下这个feel:

排名第一的Llama 2,分数仅为54;紧随其后的便是BLOOMZ,得分53。

而GPT-4分数仅仅为48,排名第三;来自亚马逊的Titan Text成绩垫底,仅取得12分。

不仅如此,在斯坦福HAI官方的博客中,负责人Rishi Bommasani直言不讳地把OpenAI单拎出来说道:

基础模型领域的公司变得越来越不透明。

例如名字带"open"的OpenAI曾明确表示,与GPT-4相关的大多数信息将不会公开。

总而言之,团队认为大模型发展到现阶段,它们的透明度是一个非常重要的关键点,直接与是否可信挂钩。

而且更深层次的,他们认为这也从侧面反映了人工智能行业从根本上缺乏透明度。

100多页论文研究模型透明度

那么这个排名到底是怎么来的?

在成绩公布的同时,团队也把一篇厚达100多页的论文晒了出来。

正如我们刚才提到的,这次排名一共涉及到了100个指标维度。

若是"归拢归拢"着来看,可以将这些指标大致分为三大类,分别是:

  • 上游(Upstream):指构建基础模型所涉及的成分和过程,例如计算资源、数据等;
  • 模型(Model):指基础模型的属性和功能,例如体系结构、能力和风险等;
  • 下游(Downstream):基础模型是如何分布和使用的,例如对用户的影响、更新内容、控制策略等。

将10大模型此次的成绩,按照上面的三大维度来看,得分细节如下:

从结果上来看,"上游"类指标的得分差异较为明显;例如BLOOMZ的"上游"类指标在整体得分中的占比较高。

而像Jurassic-2、Inflection-1和Titan Text,这三个模型的"上游"类指标得分直接为0。

如果将"上游"、"模型"和"下游"视为三个"顶级域",那么团队在它们基础之上,还分了更精细、更深入的13个"子域"

  • 数据(Data)、劳动力(Labor)、计算(Compute);
  • 方法(Methods)、模型基础(Model Basicis)、模型访问(Model Access)、功能(Capabilities);
  • 风险(Risks)、缓解措施(Mitigations)、分布(Distributions)、使用策略(Usage Policy)、反馈(Feedback)、影响(Impact)。

13个"子域"划分下的细节得分情况如下:

至于完整的100个指标维度,可以参考下面这张图表:

当然,对于大模型领域最具热度话题之一的**"开源闭源之争"**,也在此次的研究中有所涉足。

团队将广泛可下载的模型标记为开源模型,"参赛选手"中有三位属于此列,分别是Llama 2、BLOOMZ和Stable Diffusion 2。

从排名结果中显而易见地可以看出,开源模型的得分普遍遥遥领先,唯有GPT-4的得分比Stable Diffusion 2高出了1分。

对此,研究人员也做出了解释:

这种差异很大程度上是由于闭源模型的开发人员在"上游"问题上缺乏透明度造成的,比如用于构建模型的数据、劳动力和计算。

此次模型透明度排名的更多细节内容,可参考文末的论文。

透明度为什么重要?

针对这个问题,斯坦福HAI在官方博客中也做出了相应说明。

例如在负责人Rishi Bommasani看来:

缺乏透明度,长期以来一直是数字技术消费者面临的一个问题。

在当下的互联网中充斥着诸多这样的问题,例如欺骗性的广告和定价、欺骗用户在不知情的情况下进行网购等等。

MIT博士Shayne Longpre认为,随着大模型越发的火热并且在各行各业中迅速落地,科学家们有必要了解它们是如何设计的,尤其是"上游"的那些指标。

对于产业界来说,亦是如此,决策者们在面对"用哪个大模型、怎么用"等问题时,都需要建立在模型透明度的基础之上。

那么你对于这次大模型的透明度排名有怎样的看法呢?欢迎在评论区留言交流~

论文地址:
crfm.stanford.edu/fmti/fmti.p...

参考链接:

1\][hai.stanford.edu/news/introd...](https://link.juejin.cn?target=https%3A%2F%2Fhai.stanford.edu%2Fnews%2Fintroducing-foundation-model-transparency-index "https://hai.stanford.edu/news/introducing-foundation-model-transparency-index") \[2\][github.com/stanford-cr...](https://link.juejin.cn?target=https%3A%2F%2Fgithub.com%2Fstanford-crfm%2Ffmti "https://github.com/stanford-crfm/fmti") \[3\][www.theverge.com/2023/10/18/...](https://link.juejin.cn?target=https%3A%2F%2Fwww.theverge.com%2F2023%2F10%2F18%2F23922973%2Fstanford-ai-foundation-model-transparency-index "https://www.theverge.com/2023/10/18/23922973/stanford-ai-foundation-model-transparency-index") *版权所有,未经授权不得以任何形式转载及使用,违者必究。*

相关推荐
隐语SecretFlow1 天前
Kusica如何多机部署中心化进群【隐语Secretflow】
开源·资讯
隐语SecretFlow1 天前
【隐语Secretflow】如何在Docker多机部署Kuscia点对点集群
开源·资讯
算家计算7 天前
DeepSeek开源IMO金牌模型!跑出数学推理新高度,你的算力准备好了吗?
人工智能·资讯·deepseek
隐语SecretFlow7 天前
【隐语Secretflow】一文速通隐私计算节点Domain
开源·资讯
算家计算8 天前
AI学习范式变革:Ilya Sutskever最新访谈揭示后规模时代的AI发展路径—从算力竞争到研究竞争的转向
人工智能·资讯
字节跳动开源10 天前
AIBrix v0.5.0 正式发布:实现批量API支持、KVCache v1连接器升级,全面提升P/D架构协同效能
开源·github·资讯
算家计算11 天前
千问一周破千万下载背后:AI应用需求的爆发与生态竞赛
人工智能·aigc·资讯
算家计算14 天前
黄仁勋马斯克罕见同台!定调AI未来三大关键词:算力、货币失效与泡沫
人工智能·nvidia·资讯