源码解析flink文件连接源TextInputFormat

背景:

kafka的文件系统数据源可以支持精准一次的一致性,本文就从源码看下如何TextInputFormat如何支持状态的精准一致性

TextInputFormat源码解析

首先flink会把输入的文件进行切分,分成多个数据块的形式,每个数据源算子任务会被分配以读取其中的数据块,但是不是所有的文件都能进行分块,判断文件是否可以进行分块的代码如下:

java 复制代码
protected boolean testForUnsplittable(FileStatus pathFile) {
    if (getInflaterInputStreamFactory(pathFile.getPath()) != null) {
        unsplittable = true;
        return true;
    }
    return false;
}

private InflaterInputStreamFactory<?> getInflaterInputStreamFactory(Path path) {
    String fileExtension = extractFileExtension(path.getName());
    if (fileExtension != null) {
        return getInflaterInputStreamFactory(fileExtension);
    } else {
        return null;
    }
}

后缀名称是.gz,.bzip2等的文件都没法切分,如果可以切分,切分的具体代码如下所示:

java 复制代码
while (samplesTaken < numSamples && fileNum < allFiles.size()) {
    // make a split for the sample and use it to read a record
    FileStatus file = allFiles.get(fileNum);
// 根据偏移量进行切分
    FileInputSplit split = new FileInputSplit(0, file.getPath(), offset, file.getLen() - offset, null);
    // we open the split, read one line, and take its length
    try {
        open(split);
        if (readLine()) {
            totalNumBytes += this.currLen + this.delimiter.length;
            samplesTaken++;
        }
    } finally {
        // close the file stream, do not release the buffers
        super.close();
    }
// 偏移量迁移
    offset += stepSize;

    // skip to the next file, if necessary
    while (fileNum < allFiles.size()
            && offset >= (file = allFiles.get(fileNum)).getLen()) {
        offset -= file.getLen();
        fileNum++;
    }
}

再来看一下TextInputFormat如何支持checkpoint操作,保存文件的偏移量的代码:

java 复制代码
@Override
public void snapshotState(StateSnapshotContext context) throws Exception {
    super.snapshotState(context);

    checkState(
            checkpointedState != null, "The operator state has not been properly initialized.");

    int subtaskIdx = getRuntimeContext().getIndexOfThisSubtask();
    // 算子列表状态
    checkpointedState.clear();
    // 获取文件的当前读取的偏移
    List<T> readerState = getReaderState();

    try {
        for (T split : readerState) {
           //保存到检查点路径中
            checkpointedState.add(split);
        }
    } catch (Exception e) {
        checkpointedState.clear();

        throw new Exception(
                "Could not add timestamped file input splits to to operator "
                        + "state backend of operator "
                        + getOperatorName()
                        + '.',
                e);
    }

    if (LOG.isDebugEnabled()) {
        LOG.debug(
                "{} (taskIdx={}) checkpointed {} splits: {}.",
                getClass().getSimpleName(),
                subtaskIdx,
                readerState.size(),
                readerState);
    }
}

从检查点中恢复状态的代码如下:

java 复制代码
public void initializeState(StateInitializationContext context) throws Exception {
    super.initializeState(context);

    checkState(checkpointedState == null, "The reader state has already been initialized.");

    // 初始化算子操作状态
    checkpointedState =
            context.getOperatorStateStore()
                    .getListState(new ListStateDescriptor<>("splits", new JavaSerializer<>()));

    int subtaskIdx = getRuntimeContext().getIndexOfThisSubtask();
    
    LOG.info(
            "Restoring state for the {} (taskIdx={}).", getClass().getSimpleName(), subtaskIdx);

    splits = splits == null ? new PriorityQueue<>() : splits;
    for (T split : checkpointedState.get()) {//从检查点状态中恢复各个切分的分块
        splits.add(split);
    }
}
相关推荐
StarRocks_labs5 小时前
从InfluxDB到StarRocks:Grab实现Spark监控平台10倍性能提升
大数据·数据库·starrocks·分布式·spark·iris·物化视图
董可伦5 小时前
Dinky 安装部署并配置提交 Flink Yarn 任务
android·adb·flink
若兰幽竹5 小时前
【Spark分析HBase数据】Spark读取并分析HBase数据
大数据·spark·hbase
R²AIN SUITE6 小时前
金融合规革命:R²AIN SUITE 如何重塑银行业务智能
大数据·人工智能
绿算技术7 小时前
“强强联手,智启未来”凯创未来与绿算技术共筑高端智能家居及智能照明领域新生态
大数据·人工智能·智能家居
只因只因爆8 小时前
spark的缓存
大数据·缓存·spark
Leo.yuan9 小时前
3D 数据可视化系统是什么?具体应用在哪方面?
大数据·数据库·3d·信息可视化·数据分析
只因只因爆9 小时前
spark小任务
大数据·分布式·spark
cainiao0806059 小时前
Java 大视界——Java 大数据在智慧交通智能停车诱导系统中的数据融合与实时更新
java·大数据·开发语言
End92812 小时前
Spark之搭建Yarn模式
大数据·分布式·spark