【无标题】

一边学习,一边总结,一边分享!

往期WGCNA分析教程

关于WGCNA分析教程日常更新

学习无处不在,我们的教程会在原有的基础上不断进行更新和添加新的内容,以及不断完善的分析代码。尽最大的能力,让大家拿到代码后直接上手分析。而不需要调整那些看不懂的参数而烦恼(但这仅限于自己的能力范围之内)。

本次WGCNA教程更新,是基于WGCNA分析 | 全流程分析代码 | 代码一的教程。针对原有教程一,增加模块基因文件输出各模块Hub基因之间的link文件输出(此文件可以直接输入Cytoscape软件,绘制hub基因直接网络图)、相关性共表网络图共表达基因与性状的相关性网络图

本教程所有图形

![外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传](https://img-home.csdnimg.cn/images/20230724024159.png?origin_url=https%3A%2F%2Ffiles.mdnice.com%2Fuser%2F40177%2Fa82cb84a-1fe8-4f75-82d9-75be9a8165a4.png%2C![](https%3A%2F%2Fimg-blog.csdnimg.cn%2Fimg_convert%2Fd150713efd9e3dd01d0aea3f79a93c83.png\&pos_id=img-rucft6iq-1697730354296)![](https://file.jishuzhan.net/article/1715189467981025281/15d09baad927b228e875686048a42fa4.webp)![](https://file.jishuzhan.net/article/1715189467981025281/e03b2c1b47092bccce9c0ed38cd2cfd4.webp)![](https://file.jishuzhan.net/article/1715189467981025281/c8a73136a99c023663499f56b19a4d77.webp)![](https://file.jishuzhan.net/article/1715189467981025281/cb35c10dc8f9b73ecbf10a04c2ef8535.webp)![](https://file.jishuzhan.net/article/1715189467981025281/2b1a7bbf01950bd85daa7873bfabff73.webp)![](https://file.jishuzhan.net/article/1715189467981025281/dc4928f2b43690cb1ca6a3a37f97fcc7.webp)![](https://file.jishuzhan.net/article/1715189467981025281/ef958a78c15fef0f13e532d189739090.webp)![](https://file.jishuzhan.net/article/1715189467981025281/09da68b92a7bb62a1e7f82cd41cd1385.webp)![](https://file.jishuzhan.net/article/1715189467981025281/e58832c9dc6d6429ecb204dd1641fdde.webp)![](https://file.jishuzhan.net/article/1715189467981025281/de98af04512f4db04e1f6404221200a3.webp)![](https://file.jishuzhan.net/article/1715189467981025281/937b871e8a748a029ee8e396cbd0d9d1.webp)

分析代码

关于WGCNA分析,如果你的数据量较大,建议使用服务期直接分析,本地分析可能导致R崩掉。

设置文件位置

setwd("setwd("E:\\小杜的生信筆記\\2023\\20230217_WGCNA\\WGCNA_05")")

加载分析所需的安装包

install.packages("WGCNA")
#BiocManager::install('WGCNA')
library(WGCNA)
options(stringsAsFactors = FALSE)

注意,如果你想打开多线程分析,可以使用一下代码

enableWGCNAThreads() 

一、导入基因表达量数据

##'@标准化【optional】
##'@对于数据标准化,根据自己的需求即可,非必要
# WGCNA.fpkm <- log2(WGCNA.fpkm +1 )
# write.csv(WGCNA.fpkm, "ExpData_WGCNA_log2.csv")

## 读取txt文件格式数据
WGCNA.fpkm = read.table("ExpData_WGCNA.txt",header=T,
                        comment.char = "",
                        check.names=F)
###############
# 读取csv文件格式
WGCNA.fpkm = read.csv("ExpData_WGCNA.csv", header = T, check.names = F)

数据处理

dim(WGCNA.fpkm)
names(WGCNA.fpkm)
datExpr0 = as.data.frame(t(WGCNA.fpkm[,-1]))
names(datExpr0) = WGCNA.fpkm$sample;##########如果第一行不是ID命名,就写成fpkm[,1]
rownames(datExpr0) = names(WGCNA.fpkm[,-1])

过滤数据

gsg = goodSamplesGenes(datExpr0, verbose = 3)
gsg$allOK
if (!gsg$allOK)
{
  if (sum(!gsg$goodGenes)>0)
    printFlush(paste("Removing genes:", paste(names(datExpr0)[!gsg$goodGenes], collapse = ", ")))
  if (sum(!gsg$goodSamples)>0)
    printFlush(paste("Removing samples:", paste(rownames(datExpr0)[!gsg$goodSamples], collapse = ", ")))
  # Remove the offending genes and samples from the data:
  datExpr0 = datExpr0[gsg$goodSamples, gsg$goodGenes]
}

过滤低于设定的值的基因

##filter
meanFPKM=0.5  ###--过滤标准,可以修改
n=nrow(datExpr0)
datExpr0[n+1,]=apply(datExpr0[c(1:nrow(datExpr0)),],2,mean)
datExpr0=datExpr0[1:n,datExpr0[n+1,] > meanFPKM]
# for meanFpkm in row n+1 and it must be above what you set--select meanFpkm>opt$meanFpkm(by rp)
filtered_fpkm=t(datExpr0)
filtered_fpkm=data.frame(rownames(filtered_fpkm),filtered_fpkm)
names(filtered_fpkm)[1]="sample"
head(filtered_fpkm)
write.table(filtered_fpkm, file="mRNA.filter.txt",
            row.names=F, col.names=T,quote=FALSE,sep="\t")

Sample cluster

sampleTree = hclust(dist(datExpr0), method = "average")
pdf(file = "1.sampleClustering.pdf", width = 15, height = 8)
par(cex = 0.6)
par(mar = c(0,6,6,0))
plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 2,
     cex.axis = 1.5, cex.main = 2)
### Plot a line to show the cut
#abline(h = 180, col = "red")##剪切高度不确定,故无红线
dev.off()

不过滤数据

如果你的数据不进行过滤直接进行一下操作,此步与前面的操作相同,任选异种即可。

##'@此步这里我们不过滤,直接使用
## Determine cluster under the line
clust = cutreeStatic(sampleTree, cutHeight = 50000, minSize = 10)
table(clust)
# clust 1 contains the samples we want to keep.
keepSamples = (clust!=0)
datExpr0 = datExpr0[keepSamples, ]
write.table(filtered_fpkm, file="WGCNA.过滤后数据.txt",,
            row.names=F, col.names=T,quote=FALSE,sep="\t")

###
#############Sample cluster###########
sampleTree = hclust(dist(datExpr0), method = "average")
pdf(file = "1.sampleClustering.pdf", width = 6, height = 4)
par(cex = 0.6)
par(mar = c(0,6,6,0))
plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 2,
     cex.axis = 1.5, cex.main = 2)
### Plot a line to show the cut
#abline(h = 180, col = "red")##剪切高度不确定,故无红线
dev.off()

去除离群值

pdf("2_sample clutering_delete_outliers.pdf", width = 6, height = )
par(cex = 0.6)
par(mar = c(0,6,6,0))
cutHeight = 15  ### cut高度
plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 2, 
     cex.axis = 1.5, cex.main = 2) +
  abline(h = cutHeight, col = "red")    ###'@"h = 1500"参数为你需要过滤的参数高度
dev.off()

过滤离散样本[optional]

此步可选步骤。

##'@过滤离散样本
##'@"cutHeight"为过滤参数,与上述图保持一致
clust = cutreeStatic(sampleTree, cutHeight = cutHeight, minSize = 10)
keepSamples = (clust==1)
datExpr = datExpr0[keepSamples, ]
nGenes = ncol(datExpr)
nSamples = nrow(datExpr)
dim(datExpr)
head(datExpr)
datExpr[1:11,1:12]

二、导入性状数据

##'@导入csv格式
traitData = read.csv("TraitData.csv",row.names=1)
# ##'@导入txt格式
# traitData = read.table("TraitData.txt",row.names=1,header=T,comment.char = "",check.names=F)
head(traitData)
allTraits = traitData
dim(allTraits)
names(allTraits)
# 形成一个类似于表达数据的数据框架
fpkmSamples = rownames(datExpr)
traitSamples =rownames(allTraits)
traitRows = match(fpkmSamples, traitSamples)
datTraits = allTraits[traitRows,]
rownames(datTraits)

再次样本聚类

sampleTree2 = hclust(dist(datExpr0), method = "average")
# Convert traits to a color representation: white means low, red means high, grey means missing entry
traitColors = numbers2colors(datTraits, signed = FALSE)

输出样本聚类图

pdf(file="3_Sample_dendrogram_and_trait_heatmap.pdf",width=8 ,height= 6)
plotDendroAndColors(sampleTree2, traitColors,
                    groupLabels = names(datTraits),
                    main = "Sample dendrogram and trait heatmap",cex.colorLabels = 1.5, cex.dendroLabels = 1, cex.rowText = 2)
dev.off()

三、WGCNA分析(后面都是重点)

筛选软阈值

enableWGCNAThreads()
# 设置soft-thresholding powers的数量
powers = c(1:30)
sft = pickSoftThreshold(datExpr0, powerVector = powers, verbose = 5)

此步骤是比较耗费时间的,静静等待即可。

绘制soft Threshold plot

#'@绘制soft power plot 
pdf(file="4_软阈值选择.pdf",width=12, height = 8)
par(mfrow = c(1,2))
cex1 = 0.85
# Scale-free topology fit index as a function of the soft-thresholding power
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
     xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n",
     main = paste("Scale independence"));
text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
     labels=powers,cex=cex1,col="red");
# this line corresponds to using an R^2 cut-off of h
abline(h=0.85,col="red")
# Mean connectivity as a function of the soft-thresholding power
plot(sft$fitIndices[,1], sft$fitIndices[,5],
     xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",
     main = paste("Mean connectivity"))
text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")
dev.off()

选择softpower

选择softpower是一个玄学的过程,可以直接使用软件自己认为是最好的softpower值,但是不一定你要获得最好结果;其次,我们自己选择自己认为比较好的softpower值,但是,需要自己不断的筛选。因此,从这里开始WGCNA的分析结果就开始受到不同的影响。

## 选择软件认为是最好的softpower值
#softPower =sft$powerEstimate
---
# 自己设定softpower值
softPower = 9

继续分析

adjacency = adjacency(datExpr, power = softPower)

将邻接转化为拓扑重叠

这一步建议去服务器上跑,后面的步骤就在服务器上跑吧,数据量太大;如果你的数据量较小,本地也就可以

TOM = TOMsimilarity(adjacency);
dissTOM = 1-TOM

geneTree = hclust(as.dist(dissTOM), method = "average");

绘制聚类树(树状图)

pdf(file="4_Gene clustering on TOM-based dissimilarity.pdf",width=6,height=4)
plot(geneTree, xlab="", sub="", main = "Gene clustering on TOM-based dissimilarity",
     labels = FALSE, hang = 0.04)
dev.off()

加入模块

minModuleSize = 30
# Module identification using dynamic tree cut:
dynamicMods = cutreeDynamic(dendro = geneTree, distM = dissTOM,
                            deepSplit = 2, pamRespectsDendro = FALSE,
                            minClusterSize = minModuleSize);
table(dynamicMods)

# Convert numeric lables into colors
dynamicColors = labels2colors(dynamicMods)
table(dynamicColors)
# Plot the dendrogram and colors underneath
#sizeGrWindow(8,6)
pdf(file="5_Dynamic Tree Cut.pdf",width=8,height=6)
plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut",
                    dendroLabels = FALSE, hang = 0.03,
                    addGuide = TRUE, guideHang = 0.05,
                    main = "Gene dendrogram and module colors")
dev.off()

合并模块

做出的WGCNA分析中,具有较多的模块,但是在我们后续的分析中,是使用不到这么多的模块,以及模块越多对我们的分析越困难,那么就必须合并模块信息。具体操作如下。

MEList = moduleEigengenes(datExpr, colors = dynamicColors)
MEs = MEList$eigengenes
# Calculate dissimilarity of module eigengenes
MEDiss = 1-cor(MEs);
# Cluster module eigengenes
METree = hclust(as.dist(MEDiss), method = "average")
# Plot the result
#sizeGrWindow(7, 6)
pdf(file="6_Clustering of module eigengenes.pdf",width=7,height=6)
plot(METree, main = "Clustering of module eigengenes",
     xlab = "", sub = "")
MEDissThres = 0.3######剪切高度可修改
# Plot the cut line into the dendrogram
abline(h=MEDissThres, col = "red")
dev.off()


合并及绘图

merge = mergeCloseModules(datExpr, dynamicColors, cutHeight = MEDissThres, verbose = 3)
# The merged module colors
mergedColors = merge$colors
# Eigengenes of the new merged modules:
mergedMEs = merge$newMEs
table(mergedColors)

#输出所有modules
color<-unique(mergedColors)
for (i  in 1:length(color)) {
  y=t(assign(paste(color[i],"expr",sep = "."),datExpr[mergedColors==color[i]]))
  write.csv(y,paste('6',color[i],"csv",sep = "."),quote = F)
}
#save.image(file = "module_splitted.RData")

##'@输出merge模块图形
pdf(file="7_merged dynamic.pdf", width = 8, height = 6)
plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors),
                    c("Dynamic Tree Cut", "Merged dynamic"),
                    dendroLabels = FALSE, hang = 0.03,
                    addGuide = TRUE, guideHang = 0.05)
dev.off()

计算相关性

moduleColors = mergedColors
# Construct numerical labels corresponding to the colors
colorOrder = c("grey", standardColors(50))
moduleLabels = match(moduleColors, colorOrder)-1
MEs = mergedMEs

教程详情请看

WGNCA分析教程五 | 更新版本(点击)

往期文章:

4. 精美图形绘制教程

5. 转录组分析教程

转录组上游分析教程[零基础]

小杜的生信筆記 ,主要发表或收录生物信息学的教程,以及基于R的分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

相关推荐
怀旧6664 分钟前
spring boot 项目配置https服务
java·spring boot·后端·学习·个人开发·1024程序员节
weixin_4493108411 分钟前
高效集成:聚水潭采购数据同步到MySQL
android·数据库·mysql
亚图跨际1 小时前
MATLAB和Python及R潜变量模型和降维
python·matlab·r语言·生物学·潜变量模型
Cachel wood1 小时前
Github配置ssh key原理及操作步骤
运维·开发语言·数据库·windows·postgresql·ssh·github
infiniteWei1 小时前
【Lucene】原理学习路线
学习·搜索引擎·全文检索·lucene
standxy1 小时前
如何将钉钉新收款单数据高效集成到MySQL
数据库·mysql·钉钉
follycat1 小时前
[极客大挑战 2019]PHP 1
开发语言·学习·网络安全·php
Narutolxy2 小时前
MySQL 权限困境:从权限丢失到权限重生的完整解决方案20241108
数据库·mysql
Venchill2 小时前
安装和卸载Mysql(压缩版)
数据库·mysql
写点什么啦2 小时前
使用R语言survminer获取生存分析高风险和低风险的最佳截断值cut-off
开发语言·python·r语言·生存分析·x-tile