数据分析:密度图

目前拥有的数据如图,三列分别对应瑕疵种类,对应的置信

度,x方向坐标。

现在想要做的事是观看瑕疵种类和置信度之间的关系。
要显示数据分布的集中程度,可以使用以下几种常见的图形来观察:

1、箱线图(Box Plot):箱线图展示了数据的中位数、上下四分位数、最小值和最大值等统计指标,并通过箱体的长度和须的长度来表示数据的分布情况。箱线图能够展示数据的异常值和偏态程度,从而提供数据集中程度的信息。

2、直方图(Histogram):直方图用柱状图的形式表示数据在不同区间内的频数或频率。直方图能够给出数据的分布情况,高度表示数据出现的频次,整个图形可以展示数据的集中和离散程度。

3、密度图(Density Plot):密度图是通过平滑直方图来估计数据的概率密度函数,并以连续曲线的形式展示数据分布的集中程度。密度图可以更直观地看出数据的峰值和分布的波动情况。

4、散点图(Scatter Plot):散点图用点的位置来表示两个变量之间的关系。通过观察散点图中点的分布情况,可以大致判断数据的集中程度和相关性。

下面我使用的是密度图,因为密度的连续曲线更加容易看出数据分布的集中程度。

c 复制代码
import pandas as pd
import matplotlib.pyplot as plt

# 读取没有列标签的CSV文件
df = pd.read_csv('camera0.csv', header=None)
# 使用整数索引访问列数据
confidence_by_type = df.groupby(0)[1]
# 绘制置信度密度分布图
plt.figure(figsize=(10, 6))
confidence_by_type.plot(kind='density', linewidth=2, alpha=0.5)
plt.xlabel('Confidence')
plt.ylabel('Density')
plt.title('Confidence Density Distribution by Type')
plt.legend(confidence_by_type.groups.keys())

# 显示图形
plt.show()

如上图所示,我的横坐标是第二列置信度,纵坐标是密度,四条线分别对应第一列的四种类型。

这样就可以看懂我的数据的分布集中情况。

相关推荐
Johny_Zhao2 小时前
CentOS Stream 8 高可用 Kuboard 部署方案
linux·网络·python·网络安全·docker·信息安全·kubernetes·云计算·shell·yum源·系统运维·kuboard
站大爷IP3 小时前
精通einsum():多维数组操作的瑞士军刀
python
站大爷IP3 小时前
Python与MongoDB的亲密接触:从入门到实战的代码指南
python
Roc-xb4 小时前
/etc/profile.d/conda.sh: No such file or directory : numeric argument required
python·ubuntu·conda
世由心生5 小时前
[从0到1]环境准备--anaconda与pycharm的安装
ide·python·pycharm
猛犸MAMMOTH6 小时前
Python打卡第54天
pytorch·python·深度学习
梓羽玩Python6 小时前
12K+ Star的离线语音神器!50MB模型秒杀云端API,隐私零成本,20+语种支持!
人工智能·python·github
成都犀牛6 小时前
LangGraph 深度学习笔记:构建真实世界的智能代理
人工智能·pytorch·笔记·python·深度学习
終不似少年遊*6 小时前
【数据可视化】Pyecharts-家乡地图
python·信息可视化·数据挖掘·数据分析·数据可视化·pyecharts
仟濹7 小时前
「Matplotlib 入门指南」 Python 数据可视化分析【数据分析全栈攻略:爬虫+处理+可视化+报告】
python·信息可视化·数据分析·matplotlib