瑞芯微RKNN开发·yolov7

官方预训练模型转换

  1. 下载yolov7源码解压到本地,并配置基础运行环境。
  2. 下载官方预训练模型
  1. 进入yolov7-main目录下,新建文件夹weights,并将步骤2中下载的权重文件放进去。

  2. 修改models/yolo.py文件

    复制代码
     def forward(self, x):
         # x = x.copy()  # for profiling
         z = []  # inference output
         self.training |= self.export
         for i in range(self.nl):
             x[i] = self.m[i](x[i]).sigmoid()  # conv
         return x[0], x[1], x[2]
  3. 新建export_nnie.py文件

    import os
    import torch
    import onnx
    from onnxsim import simplify
    import onnxoptimizer
    import argparse
    from models.yolo import Detect, Model

    if name == 'main':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='./weights/yolov7.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='./cfg/deploy/yolov7.yaml', help='initial weights path')
    #================================================================
    opt = parser.parse_args()
    print(opt)

    复制代码
     #Save Only weights
     ckpt = torch.load(opt.weights, map_location=torch.device('cpu'))
     torch.save(ckpt['model'].state_dict(), opt.weights.replace(".pt", "-model.pt"))
    
     #Load model without postprocessing
     new_model = Model(opt.cfg)
     new_model.load_state_dict(torch.load(opt.weights.replace(".pt", "-model.pt"), map_location=torch.device('cpu')), False)
     new_model.eval()
    
     #save to JIT script
     example = torch.rand(1, 3, 640, 640)
     traced_script_module = torch.jit.trace(new_model, example)
     traced_script_module.save(opt.weights.replace(".pt", "-jit.pt"))
    
     #save to onnx
     f = opt.weights.replace(".pt", ".onnx")
     torch.onnx.export(new_model, example, f, verbose=False, opset_version=12,
                             training=torch.onnx.TrainingMode.EVAL,
                             do_constant_folding=True,
                             input_names=['data'],
                             output_names=['out0','out1','out2'])
    
     #onnxsim
     model_simp, check = simplify(f)
     assert check, "Simplified ONNX model could not be validated"
     onnx.save(model_simp, opt.weights.replace(".pt", "-sim.onnx"))
    
     #optimize onnx
     passes = ["extract_constant_to_initializer", "eliminate_unused_initializer"]
     optimized_model = onnxoptimizer.optimize(model_simp, passes)
     onnx.checker.check_model(optimized_model)
     onnx.save(optimized_model, opt.weights.replace(".pt", "-op.onnx"))
     print('finished exporting onnx')
  4. 命令行执行python3 export_nnie.py脚本(默认为yolov7.pt, 加--weights参数可指定权重,--cfg指定模型配置文件),转换成功会输出一下信息, 转换后的模型存于权重同级目录(*-op.onnx后缀模型)

    Namespace(cfg='./cfg/deploy/yolov7.yaml', weights='./weights/yolov7.pt')
    finished exporting onnx

RKNN开发板植入-模型转换篇

前期准备
  • RKNN开发环境(python)
  • rknn-toolkit2
详细流程
  1. 进入rknn-toolkits2/examples/onnx/yolov5示例目录下

  2. 修改test.py内容(按需修改ONNX_MODEL、RKNN_MODEL、IMG_PATH、DATASET等等超参数)

    def sigmoid(x):
    # return 1 / (1 + np.exp(-x))
    return x

  3. 命令行执行python3 test.py即可获取推理结果

RKNN开发板植入-NPU加载推理篇(C++)

后续放出代码

相关推荐
Coding茶水间16 小时前
基于深度学习的西红柿成熟度检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
YOULANSHENGMENG18 小时前
YOLOV8_obb的C++的工程实现---2)yolov8_obb工程部署
yolo
Coding茶水间2 天前
基于深度学习的面部口罩检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
musk12122 天前
YOLOv8n模型微调全指南:从环境搭建到技能储备 (内容由 AI 生成)
人工智能·yolo
懷淰メ2 天前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的太阳能电池板缺陷检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt5·检测系统·deepseek·太阳能电池
lxmyzzs2 天前
【图像算法 - 36】医疗应用:基于 YOLOv12 与 OpenCV 的高精度脑肿瘤检测系统实现
python·深度学习·opencv·yolo·计算机视觉·脑肿瘤检测
boligongzhu2 天前
ubuntu20.04搭建YOLOv11 GPU运行环境
linux·yolo·ubuntu·机器人
self-motivation2 天前
征机器人领域主流模型量化,评测,优化,部署工具model_optimizer的开源合作开发
yolo·机器人·量化·foundationpose·pi0.5
Coding茶水间2 天前
基于深度学习的火焰检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉