瑞芯微RKNN开发·yolov7

官方预训练模型转换

  1. 下载yolov7源码解压到本地,并配置基础运行环境。
  2. 下载官方预训练模型
  1. 进入yolov7-main目录下,新建文件夹weights,并将步骤2中下载的权重文件放进去。

  2. 修改models/yolo.py文件

    复制代码
     def forward(self, x):
         # x = x.copy()  # for profiling
         z = []  # inference output
         self.training |= self.export
         for i in range(self.nl):
             x[i] = self.m[i](x[i]).sigmoid()  # conv
         return x[0], x[1], x[2]
  3. 新建export_nnie.py文件

    import os
    import torch
    import onnx
    from onnxsim import simplify
    import onnxoptimizer
    import argparse
    from models.yolo import Detect, Model

    if name == 'main':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='./weights/yolov7.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='./cfg/deploy/yolov7.yaml', help='initial weights path')
    #================================================================
    opt = parser.parse_args()
    print(opt)

    复制代码
     #Save Only weights
     ckpt = torch.load(opt.weights, map_location=torch.device('cpu'))
     torch.save(ckpt['model'].state_dict(), opt.weights.replace(".pt", "-model.pt"))
    
     #Load model without postprocessing
     new_model = Model(opt.cfg)
     new_model.load_state_dict(torch.load(opt.weights.replace(".pt", "-model.pt"), map_location=torch.device('cpu')), False)
     new_model.eval()
    
     #save to JIT script
     example = torch.rand(1, 3, 640, 640)
     traced_script_module = torch.jit.trace(new_model, example)
     traced_script_module.save(opt.weights.replace(".pt", "-jit.pt"))
    
     #save to onnx
     f = opt.weights.replace(".pt", ".onnx")
     torch.onnx.export(new_model, example, f, verbose=False, opset_version=12,
                             training=torch.onnx.TrainingMode.EVAL,
                             do_constant_folding=True,
                             input_names=['data'],
                             output_names=['out0','out1','out2'])
    
     #onnxsim
     model_simp, check = simplify(f)
     assert check, "Simplified ONNX model could not be validated"
     onnx.save(model_simp, opt.weights.replace(".pt", "-sim.onnx"))
    
     #optimize onnx
     passes = ["extract_constant_to_initializer", "eliminate_unused_initializer"]
     optimized_model = onnxoptimizer.optimize(model_simp, passes)
     onnx.checker.check_model(optimized_model)
     onnx.save(optimized_model, opt.weights.replace(".pt", "-op.onnx"))
     print('finished exporting onnx')
  4. 命令行执行python3 export_nnie.py脚本(默认为yolov7.pt, 加--weights参数可指定权重,--cfg指定模型配置文件),转换成功会输出一下信息, 转换后的模型存于权重同级目录(*-op.onnx后缀模型)

    Namespace(cfg='./cfg/deploy/yolov7.yaml', weights='./weights/yolov7.pt')
    finished exporting onnx

RKNN开发板植入-模型转换篇

前期准备
  • RKNN开发环境(python)
  • rknn-toolkit2
详细流程
  1. 进入rknn-toolkits2/examples/onnx/yolov5示例目录下

  2. 修改test.py内容(按需修改ONNX_MODEL、RKNN_MODEL、IMG_PATH、DATASET等等超参数)

    def sigmoid(x):
    # return 1 / (1 + np.exp(-x))
    return x

  3. 命令行执行python3 test.py即可获取推理结果

RKNN开发板植入-NPU加载推理篇(C++)

后续放出代码

相关推荐
飞翔的佩奇12 小时前
【完整源码+数据集+部署教程】遥感森林砍伐检测系统源码和数据集:改进yolo11-SWC
python·yolo·计算机视觉·数据集·yolo11·遥感森林砍伐检测
格林威12 小时前
Baumer高防护相机如何通过YoloV8深度学习模型实现网球运动员和网球速度的检测分析(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·ui·c#·视觉检测
m0_6786933314 小时前
深度学习笔记34-YOLOv5调用官方权重进行检测
笔记·深度学习·yolo
点云兔子19 小时前
使用RealSense相机和YOLO进行实时目标检测
深度学习·yolo
arron88992 天前
YOLOv8n-pose 模型使用
人工智能·深度学习·yolo
飞翔的佩奇2 天前
【完整源码+数据集+部署教程】表盘指针检测系统源码和数据集:改进yolo11-CA-HSFPN
python·yolo·计算机视觉·数据集·yolo11·表盘指针检测
Coovally AI模型快速验证2 天前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
yzx9910132 天前
小程序开发APP
开发语言·人工智能·python·yolo
飞翔的佩奇2 天前
【完整源码+数据集+部署教程】二维码与查找模式检测系统源码和数据集:改进yolo11-CSwinTransformer
python·yolo·计算机视觉·数据集·yolo11·二维码与查找模式检测
yzx9910133 天前
Yolov模型的演变
人工智能·算法·yolo