瑞芯微RKNN开发·yolov7

官方预训练模型转换

  1. 下载yolov7源码解压到本地,并配置基础运行环境。
  2. 下载官方预训练模型
  1. 进入yolov7-main目录下,新建文件夹weights,并将步骤2中下载的权重文件放进去。

  2. 修改models/yolo.py文件

    复制代码
     def forward(self, x):
         # x = x.copy()  # for profiling
         z = []  # inference output
         self.training |= self.export
         for i in range(self.nl):
             x[i] = self.m[i](x[i]).sigmoid()  # conv
         return x[0], x[1], x[2]
  3. 新建export_nnie.py文件

    import os
    import torch
    import onnx
    from onnxsim import simplify
    import onnxoptimizer
    import argparse
    from models.yolo import Detect, Model

    if name == 'main':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='./weights/yolov7.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='./cfg/deploy/yolov7.yaml', help='initial weights path')
    #================================================================
    opt = parser.parse_args()
    print(opt)

    复制代码
     #Save Only weights
     ckpt = torch.load(opt.weights, map_location=torch.device('cpu'))
     torch.save(ckpt['model'].state_dict(), opt.weights.replace(".pt", "-model.pt"))
    
     #Load model without postprocessing
     new_model = Model(opt.cfg)
     new_model.load_state_dict(torch.load(opt.weights.replace(".pt", "-model.pt"), map_location=torch.device('cpu')), False)
     new_model.eval()
    
     #save to JIT script
     example = torch.rand(1, 3, 640, 640)
     traced_script_module = torch.jit.trace(new_model, example)
     traced_script_module.save(opt.weights.replace(".pt", "-jit.pt"))
    
     #save to onnx
     f = opt.weights.replace(".pt", ".onnx")
     torch.onnx.export(new_model, example, f, verbose=False, opset_version=12,
                             training=torch.onnx.TrainingMode.EVAL,
                             do_constant_folding=True,
                             input_names=['data'],
                             output_names=['out0','out1','out2'])
    
     #onnxsim
     model_simp, check = simplify(f)
     assert check, "Simplified ONNX model could not be validated"
     onnx.save(model_simp, opt.weights.replace(".pt", "-sim.onnx"))
    
     #optimize onnx
     passes = ["extract_constant_to_initializer", "eliminate_unused_initializer"]
     optimized_model = onnxoptimizer.optimize(model_simp, passes)
     onnx.checker.check_model(optimized_model)
     onnx.save(optimized_model, opt.weights.replace(".pt", "-op.onnx"))
     print('finished exporting onnx')
  4. 命令行执行python3 export_nnie.py脚本(默认为yolov7.pt, 加--weights参数可指定权重,--cfg指定模型配置文件),转换成功会输出一下信息, 转换后的模型存于权重同级目录(*-op.onnx后缀模型)

    Namespace(cfg='./cfg/deploy/yolov7.yaml', weights='./weights/yolov7.pt')
    finished exporting onnx

RKNN开发板植入-模型转换篇

前期准备
  • RKNN开发环境(python)
  • rknn-toolkit2
详细流程
  1. 进入rknn-toolkits2/examples/onnx/yolov5示例目录下

  2. 修改test.py内容(按需修改ONNX_MODEL、RKNN_MODEL、IMG_PATH、DATASET等等超参数)

    def sigmoid(x):
    # return 1 / (1 + np.exp(-x))
    return x

  3. 命令行执行python3 test.py即可获取推理结果

RKNN开发板植入-NPU加载推理篇(C++)

后续放出代码

相关推荐
Blossom.1189 小时前
基于深度学习的医学图像分析:使用YOLOv5实现医学图像目标检测
人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉·数据挖掘
Stuomasi_xiaoxin14 小时前
YOLOv13 汉化优化部署版本:超图增强自适应视觉感知的目标检测系统
人工智能·yolo·目标检测·计算机视觉·目标跟踪
FF-Studio20 小时前
25年电赛C题 发挥部分 YOLOv8方案&数据集
python·深度学习·yolo
钱彬 (Qian Bin)1 天前
《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——8. AI赋能(下):在Qt中部署YOLOv8模型
人工智能·qt·yolo·qml·qt quick·工业质检·螺丝瑕疵检测
go54631584652 天前
离散扩散模型在数独问题上的复现与应用
线性代数·算法·yolo·生成对抗网络·矩阵
格林威2 天前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·计算机视觉
停走的风2 天前
Yolo底层原理学习--(第二篇)
深度学习·学习·yolo
bigdata从入门到放弃2 天前
yolo检测常见指标
人工智能·深度学习·yolo·目标跟踪
魔障阿Q3 天前
华为310P3模型转换及python推理
人工智能·python·深度学习·yolo·计算机视觉·华为
铭keny3 天前
YOLOv8 基于RTSP流目标检测
人工智能·yolo·目标检测