2022最新版-李宏毅机器学习深度学习课程-P26 Recurrent Neural Network

RNN

应用场景:填满信息

把每个单词表示成一个向量的方法:独热向量

还有其他方法,比如:Word hashing 单词哈希

  • 输入:单词
  • 输出:该单词属于哪一类的概率分布

由于输入是文字序列,这就产生了一个问题:

是到达还是离开?

隐藏层的输出会被存储在内存中,内存能被视为另一个输入。

改变序列的顺序会改变输出。

RNN的网络结构

目前已提出的两个网络及区别

双向RNN

它与传统的循环神经网络(RNN)相比有一个重要的区别:它在每个时间步上包含两个方向的循环连接,一个从过去到未来(正向),另一个从未来到过去(逆向)。

在双向RNN中,每个时间步的隐藏状态是由两部分组成,一部分来自正向传播,另一部分来自逆向传播。这使得双向RNN能够捕捉到序列中的上下文信息,不仅考虑了过去的信息还考虑了未来的信息。这对于很多自然语言处理任务,如情感分析、命名实体识别、语言建模等非常有用,因为理解一个词语或标记通常需要考虑它周围的上下文。

在训练双向RNN时,通常会使用标准的反向传播算法 ,但是需要在正向和逆向传播中分别计算梯度 ,然后将它们合并以更新网络参数。这使得双向RNN的训练稍微复杂一些,但在实际应用中,往往能够提供更好的性能。

RNN的经典变形:LSTM

四个输入,1个输出,三个门

网络结构

三个门都是1:打开,0:关闭

注意这与遗忘门的名字是反着的,但就是这么奇怪~

操作例子

原本的网络结构

参数是原本的四倍

结构简图

一个单元

多个单元

多层的LSTM

Keras支持三个RNN:LSTM GRU SimpleRNN

相关推荐
辛勤的程序猿5 分钟前
改进的mamba核心块—Hybrid SS2D Block(适用于视觉)
人工智能·深度学习·yolo
serve the people8 分钟前
如何区分什么场景下用机器学习,什么场景下用深度学习
人工智能·深度学习·机器学习
xjxijd13 分钟前
Serverless 3.0 混合架构:容器 + 事件驱动,AI 服务弹性伸缩响应快 3 倍
人工智能·架构·serverless
csdn_aspnet18 分钟前
如何用爬虫、机器学习识别方式屏蔽恶意广告
人工智能·爬虫·机器学习
weixin_4577600023 分钟前
RNN(循环神经网络)原理
人工智能·rnn·深度学习
代码AI弗森37 分钟前
意图识别深度原理解析:从向量空间到语义流形
人工智能
姚华军40 分钟前
RagFlow、Dify部署时,端口如何调整成指定端口
人工智能·dify·ragflow
老蒋新思维44 分钟前
创客匠人峰会新视角:AI 时代知识变现的 “组织化转型”—— 从个人 IP 到 “AI+IP” 组织的增长革命
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
JoannaJuanCV1 小时前
自动驾驶—CARLA仿真(0)报错记录
人工智能·机器学习·自动驾驶
小白狮ww1 小时前
Matlab 教程:基于 RFUAV 系统使用 Matlab 处理无人机信号
开发语言·人工智能·深度学习·机器学习·matlab·无人机·rfuav