官方预训练模型转换
- 下载yolov5-v6.0分支源码解压到本地,并配置基础运行环境。
- 下载官方预训练模型
-
进入yolov5-6.0目录下,新建文件夹weights,并将步骤2中下载的权重文件放进去。
-
修改models/yolo.py文件
def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]).sigmoid() # conv # bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) # x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() # if not self.training: # inference # if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic: # self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) # y = x[i].sigmoid() # if self.inplace: # y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy # y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh # else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 # xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy # wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh # y = torch.cat((xy, wh, y[..., 4:]), -1) # z.append(y.view(bs, -1, self.no)) # return x if self.training else (torch.cat(z, 1), x) return x[0], x[1], x[2]
-
新建export_rknn.py文件
import os
import torch
import onnx
from onnxsim import simplify
import onnxoptimizer
import argparse
from models.yolo import Detect, Modelif name == 'main':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./weights/yolov5n.pt', help='initial weights path')#================================================================ opt = parser.parse_args() print(opt) #Save Only weights ckpt = torch.load(opt.weights, map_location=torch.device('cpu')) torch.save(ckpt['model'].state_dict(), opt.weights.replace(".pt", "-model.pt")) #Load model without postprocessing new_model = Model("./models/{}.yaml".format(os.path.basename(opt.weights).strip(".pt"))) new_model.load_state_dict(torch.load(opt.weights.replace(".pt", "-model.pt"), map_location=torch.device('cpu')), False) new_model.eval() #save to JIT script example = torch.rand(1, 3, 640, 640) traced_script_module = torch.jit.trace(new_model, example) traced_script_module.save(opt.weights.replace(".pt", "-jit.pt")) #save to onnx f = opt.weights.replace(".pt", ".onnx") torch.onnx.export(new_model, example, f, verbose=False, opset_version=12, training=torch.onnx.TrainingMode.EVAL, do_constant_folding=True, input_names=['data'], output_names=['out0','out1','out2']) #onnxsim model_simp, check = simplify(f) assert check, "Simplified ONNX model could not be validated" onnx.save(model_simp, opt.weights.replace(".pt", "-sim.onnx")) #optimize onnx passes = ["extract_constant_to_initializer", "eliminate_unused_initializer"] optimized_model = onnxoptimizer.optimize(model_simp, passes) onnx.checker.check_model(optimized_model) onnx.save(optimized_model, opt.weights.replace(".pt", "-op.onnx")) print('finished exporting onnx')
-
命令行执行python3 export_rknn.py脚本(默认为yolov5n.pt, 加--weights参数可指定权重),转换成功会输出一下信息, 转换后的模型存于权重同级目录(*-op.onnx后缀模型)
Namespace(weights='./weights/yolov5n.pt')
finished exporting onnx
RKNN开发板植入-模型转换篇
前期准备
- RKNN开发环境(python)
- rknn-toolkits2
详细流程
-
进入rknn-toolkits2/examples/onnx/yolov5示例目录下
-
修改test.py内容(按需修改ONNX_MODEL、RKNN_MODEL、IMG_PATH、DATASET等等超参数)
def sigmoid(x):
# return 1 / (1 + np.exp(-x))
return x -
命令行执行
python3 test.py
即可获取推理结果
RKNN开发板植入-NPU加载推理篇(C++)
后续放出代码