基于天鹰优化的BP神经网络(分类应用) - 附代码

基于天鹰优化的BP神经网络(分类应用) - 附代码

文章目录

摘要:本文主要介绍如何用天鹰算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1 特征2 特征3 类别
单组iris数据 5.3 2.1 1.2 1

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组) 测试集(组) 总数据(组)
105 45 150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.天鹰优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:


图1.神经网络结构

神经网络参数如下:

matlab 复制代码
%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 天鹰算法应用

天鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/123476675

天鹰算法的参数设置为:

matlab 复制代码
popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)

其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从天鹰算法的收敛曲线可以看到,整体误差是不断下降的,说明天鹰算法起到了优化的作用:



5.Matlab代码

相关推荐
亚马逊云开发者几秒前
Agentic AI基础设施实践经验系列(七):可观测性在Agent应用的挑战与实践
人工智能
cwh_rs_giser1 分钟前
如何高效设置机器学习超参数?——借鉴成熟AutoML框架的实践
人工智能·python·机器学习
逻极4 分钟前
Scikit-learn 入门指南:从零到一掌握机器学习经典库(2025 最新版)
人工智能·python·机器学习·ai·scikit-learn·agent
草莓熊Lotso17 分钟前
C++ 抽象类与多态原理深度解析:从纯虚函数到虚表机制(附高频面试题)
java·运维·服务器·开发语言·c++·人工智能·笔记
XINVRY-FPGA17 分钟前
5CEFA9F23I7N Altera CycloneV E(Enhanced)FPGA
人工智能·嵌入式硬件·计算机视觉·fpga开发·硬件工程·dsp开发·fpga
Wayfreem23 分钟前
Spring AI Alibaba 学习之最简单的快速入门
人工智能·学习·spring
shayudiandian26 分钟前
图像分类深度学习
人工智能
王哈哈^_^36 分钟前
【完整源码+数据集】车牌数据集,yolov8车牌检测数据集 7811 张,汽车车牌识别数据集,智慧交通汽车车牌识别系统实战教程
人工智能·深度学习·yolo·目标检测·计算机视觉·毕业设计·智慧城市
IT_陈寒41 分钟前
JavaScript 性能优化实战:我从 V8 源码中学到的 7 个关键技巧
前端·人工智能·后端
大千AI助手44 分钟前
决策树悲观错误剪枝(PEP)详解:原理、实现与应用
人工智能·算法·决策树·机器学习·剪枝·大千ai助手·悲观错误剪枝